

# Project: Simple Complexity Preliminary Design Review

Presented by:

Georgia Institute of Technology
Team A.R.E.S.





#### **Agenda**

- 1. Team Overview (1 Min)
- 2. Changes Since Proposal (1 Min)
- 3. Educational Outreach (1 Min)
- 4. Safety (2 Min)
- 5. Project Budget (2 Min)
- 6. Launch Vehicle (10 min)
- 7. AGSE & Flight Systems (13 Min)
- 8. Questions (15 Min)





#### **TEAM OVERVIEW**





#### **Georgia Tech Team Overview**

- 15 person team composed of both undergraduate and graduate students
  - Graduate Students: 1
  - Undergraduates: 14
- Highly Integrated team across several disciplines

| Field                  | No. of Students |  |
|------------------------|-----------------|--|
| Aerospace Engineering  | 8               |  |
| Mechanical Engineering | 2               |  |
| Electrical Engineering | 2               |  |
| Computer Engineering   | 1               |  |
| Chemical Engineering   | 1               |  |
| Industrial Engineering | 1               |  |





#### Work Breakdown Structure







#### **CHANGES SINCE PROPOSAL**





### **Changes Since Proposal**

#### Rocket:

No changes since proposal

#### AGSE & Flight Systems:

- Elimination of environment mapping and payload localization (SLAM techniques) via sensors for payload retrieval: team will instead exploit hard-coded positions and a known starting location of the payload.
- Selection of core designs for the robotic arm, Vehicle Erector System (VES) and Igniter Insertion System (IIS).

#### **Activity Plan:**

New Douglass High School Outreach/funding plan





#### **EDUCATIONAL OUTREACH**





#### **Educational Outreach**

- Goal: Promote Interest in the Science, Technology, Engineering, and Mathematics (STEM) fields.
- As of PDR, Team A.R.E.S. have planned two (2) Educational Outreach Events
- Douglass High School
  - Work in conjunction with the Douglass High School doing projects related to the competition
- FIRST Lego League
  - Engineering competition held for Middle School students to build and compete with autonomous MINDSTORMS robot.





#### **SAFETY**





#### **Risk Assessment**

- Hazard Identification
  - What has the potential to become a safety hazard?
- Risk and Hazard Assessment
  - What are the potential consequences of the hazard?
- Risk Control and Elimination
  - What can be done to mitigate the risk?
- Reviewing Assessments
  - Are the mitigations working?
  - Are there any new safety hazards to address?





#### **PROJECT BUDGET**





## **Project Budget Summary**

Table 1: Estimated Budget for the 2014-2015 Project

| Subsystem        | Amount (\$) |
|------------------|-------------|
| Launch Vehicle & | 1,461.83    |
| Motors           |             |
| Flight Systems   | 2,721.18    |
| Operations       | 2,000.00    |
| Total:           | 6189.01     |







#### LAUNCH VEHICLE





#### **Vehicle Summary**

- Predicted apogee: 3,082 ft.
- Stability margin: 1.54 calibers
- Motor: Cesaroni J530

- 76 fps at 96 inches up the rail
- Max Mach 0.41
- Thrust to Weight Ratio: 7.93
- Total weight: ~10 lbs
- Dual deployment







#### **Rocket Fins**

Material: G10 Fiberglass sheets

Attachment: Epoxy

| Variable       | Value   |  |
|----------------|---------|--|
| Number of fins | 3       |  |
| Root chord     | 6 in    |  |
| Tip chord      | 3.75 in |  |
| Height         | 3 in    |  |
| Sweep Angle    | 36.9°   |  |
| Sweep Length   | 2.25 in |  |







#### **Booster Section**

Material: G10 Fiberglass

Attachment: Epoxy







#### **FEA Analysis & Testing Plan**

- Plan to do FEA Analysis through Solidworks
- Perform structures drop test on the body tube structure
- Static loading test on the thrust plate
- Static loading at fin attachment





#### Recovery

- Dual deployment system
- Altimeter: 2 StratoLoggers for redundancy







### **Ejection Charges**

- Black powder ejection charges
- Ground testing will be perform prior to CDR

|                                | Main<br>Parachute | Drogue<br>Parachute | Payload<br>Parachute |
|--------------------------------|-------------------|---------------------|----------------------|
| Total<br>Pressurization        | 26.7 psi          | 26.7 psi            | 22.7 psi             |
| Differential<br>Pressurization | 12 psi            | 12 psi              | 8 psi                |
| Amount of black powder         | 0.788<br>grams    | 0.867 grams         | 0.245 grams          |





# Recovery – Main







#### **Mass Breakdown**

| D                 | M (III)    | 14% | 12% |                     |
|-------------------|------------|-----|-----|---------------------|
| Parameter         | Mass (lbs) |     |     | ■ Nose cone/Payload |
| Nose cone/Payload | 1.2        |     | 7%  | Recovery            |
| Recovery          | 0. 7       |     | 2%  | Upper Coupler       |
| Upper Coupler     | 0.2        |     |     | Avionics            |
| Avionics          | 1.9        |     | 19% | Booster             |
| Booster           | 4.6        | 46% |     | Propulsion          |
| Propulsion        | 1.4        |     |     |                     |
|                   |            |     |     |                     |





# Flight Profile







### **Drift Profile**







### **FLIGHT SYSTEMS**





Overview







Schematic







- Payload Insertion System (PLIS)
- Autonomously retrieve and insert payload in nosecone
- Robotic Wooden Arm with 6 deg Freedom and 7 servo motors







- Vertical Erector System (VES)
- Successfully lift the rocket to the predetermined 5 degrees from vertical.
- Stepper Motor and Worm Screw Assembly







- Igniter Insertion System (IIS)
- Insert Igniter into Solid Rocket Motor Cavity
- Rack and Pinion System









# Flight Systems: Main System







## Flight Systems: Payload Recovery







## Flight Systems: Avionics - Recovery

#### Custom flight computer board

Teensy Microprocessor

Stratologger

Micro SD Card

Xbee Pcb Antenna

Sensors







### **Questions?**



