Georgia Tech NASA Critical Design Review Teleconference

Presented By:

Georgia Tech Team ARES

Agenda

- 1. Team Overview (1 Min)
- 2. Changes Since Proposal (1 Min)
- 3. Educational Outreach (1 Min)
- 4. Safety (2 Min)
- 5. Project Budget (2 Min)
- 6. Launch Vehicle (10 min)
- 7. AGSE& Flight Systems (13 Min)
- 8. Questions (15 Min)

Project Hermes - CDR

TEAM OVERVIEW

Georgia Tech Team Overview

- 19 person team composed of both undergraduate and graduate students
 - Graduate Students: 2
 - Undergraduates: 17
- Highly Integrated team across several disciplines

Work Breakdown Structure

Project Hermes - CDR

CHANGES SINCE PDR

Changes since PDR

- Launch Vehicle
 - ATS now actuates with DC motors and a lead screw design.
 - Payload Bay, GPS, and ATS Power supply now relocated.
 - Slight overall dimensions changes to each segment.
 - L990 set as the new booster
- Autonomous Ground Support Equipment
 - Added servo motor to robotic arm (now 5)
 - Wider base
 - Added pulley to raising mechanism
 - Redesigned ignition system
- Flight Systems: No Changes
- Project Plan: No Changes

Project Hermes - CDR

EDUCATIONAL OUTREACH

Educational Outreach

- Atlanta Maker's Faire
- FIRST Lego League
- CEISMC GT

Project Hermes - CDR

SAFETY

Risk Assessment & Launch Vehicle

- Hazard Identification
 - What has the potential to become a safety hazard?
- Risk and Hazard Assessment
 - What are the potential consequences of the hazard?
- Risk Control and Mitigation
 - What can be done to mitigate the risk?
- Reviewing Assessments
 - Are the mitigations working?

Project Hermes - CDR

PROJECT BUDGET

Project Budget Summary

Section	Cost
Avionics	\$700.00
AGSE	\$808.60
Launch Vehicle	\$963.78
Testing	\$900.00
Motor	\$1,000.00
Operations	\$1,000.00
Outreach	\$500.00
Total Budget	\$5,872.38

2015-2016 ARES Projected Budget Distribution

Project Hermes - CDR

LAUNCH VEHICLE

Launch Vehicle Summary

- Predicted apogee: 5803 ft
- Stability margin: 2.6 calibers
- Motor: Cesaroni L990

- Rail Exit Velocity: 53.9 ft/s
- Max Mach: 0.74
- Total weight: 20.25 lbs
- Dual deployment with 15" and 50 "

Fins

Tip Chord	7 cm or 2.75591 in
Root Chord	19.3 cm or 7.598 in
Thickness	0.318 cm or 0.1252 in
Fin Area	55.23 in^2
Span	13.4 cm or 5.275591 in
Aspect Ratio	0.50392

Booster Section

Apogee Targeting System (ATS)

Motor Selection

Cesaroni L990

MOTOR NAME	Cesaroni L990
DIAMETER	54mm
LENGTH	64.9cm
PROP WEIGHT	1.369kg
TOTAL WEIGHT	2.236kg
AVG THRUST	991.0N
MAX THRUST	1702.7N
TOTAL IMPULSE	2771.6
BURN TIME	2.8s

Avionics Bay

Payload Bay

Payload Bay – Dimension

FEA Thrust Plate

Mass Breakdown

Thrust-to-Weight Ratio *

```
Thrust/Weight
Avg. Thrust = 991 N
Weight = 9.7 kg * 9.81 m/s2
Thrust-to-Weight Ratio = 10.414
```


Rocket Flight Stability

Stability Calculation

5. Terms (ana ineir Kespeciive vaiu	Term	Length (cm)
Term	Length (cm)	C	71
$L_{\scriptscriptstyle N}$	45.7	CT CT	12.4
D	12.7	5	13.4
d.	12.7	R	6.35
đ	12.7	Xa	11.9
	12.7	X.	209.3
L ₇	45.7	Ν	4 Fins
Х,	96.5	856	
C _R	19.3		

$$\bar{X} = \frac{(C_N)_N X_N + (C_N)_T X_T + (C_N)_F X_F}{(C_N)_R}$$
$$\bar{X} = 182.7957184cm$$

Parachutes - Specifications *

Sizes	Main: 50" Drogue: 15", composed of tubular nylon
Recovery Harness Type	Main: Angel Parachute, Drogue: Eliptical Costuem
Length	Main: 30', Drogue 15'
Descent Rates	

Explain sizes, recovery harness type, size, length, And descent rates *

Mission Performance – Flight Profile

Mission Performance - Drift Profile

Launch Vehicle Kinetic Energy

Sections	Mass (lbs)	KE (ft-lbf)
Nosecone	0.47	8.83
Avionics Bay	2.2	35.437
Booster Section	1.5	28.18

Our total Kinetic Energy at landing is approximately 72.447 ft lbf.

Test Plan Overview

Component	Test	Verification Method
Lead Screw with DC motor actuation	Extension force of flaps test.	Quantitative Analysis
ATS	Wind tunnel testing to confirm Cd simulations.	Quantitative Analysis
Thrust Plate	Bend test and pressure test to verify rigidity until breaking point.	Quantitative Analysis
Payload Bay	Payload retention force measurement test.	Quantitative Analysis
Avionics Bay	Altimeter accuracy and accelerometer performance test.	Quantitative Analysis
Recovery System	Recovery system ground test fire.	Inspection
Fins	Fin attachment robustness test along two axis.	Quantitative Analysis
Launch Vehicle Assembly	Vehicle will be completely assembled under a time constraint to verify efficiency and effectiveness.	Inspection

Georgia Tech ARES

Project Hermes - PDR

FLIGHT SYSTEMS

Flight System Responsibilities

Outline of Success Criteria

Requirement	Design Feature to Satisfy Requirement	Requirement Verification	Success Criteria
The vehicle shall not exceed an apogee of 5,280 feet	Drag from the ATS system	Full-scale flight test	Apogee within 1% of target
The vehicle will be tracked in real- time to locate and recover it	GPS module will be used in the vehicle and base station	Full-scale flight test	The vehicle will be located on a map after it lands for recovery
The data of the vehicle's flight will be recorded	Sensors will save data	Full-scale flight test	The data will be recovered and readable after flight

Flight Systems: Avionics

Avionics Components

Part	Function
Stratologger SL100	Altimeter - used to receive and record altitude
MMA8452Q	Accelerometer - used to receive and record acceleration
mbed LPC 1768	Microcontroller - used to receive sensor data to compute and control the ATS
Eggfinder TX/RX Module	GPS module - used to track the rocket in real time
9V Alkaline Batteries	Used to power all Avionics components and ATS

Flight Systems: Avionics

General connection of main components

Flight Systems: Avionics

Eagle CAD schematic of main components

Flight Systems: Ground Station

Equipment:

- Eggfinder TX (Transmitter)
- Eggfinder RX (Receiver)

Flight Systems: ATS Science

Dynamic drag adjustment by changing the geometry exposed to the flow to increase the vehicle's aerodynamic properties.

Flight Systems: ATS Power

- 9-volt alkaline batteries will be used to power the ATS
- DC motors will be used to create torque on the air-brake flaps

Flight Systems: Testing Overview

Wind Tunnel: Test Cd of flaps against simulation, and ability for solenoids to withstand the given pressures

Flight Simulation: Forged flight data will be fed to the sensors and the response efficacy will be analyzed.

Power Consumption: Full charged power supply will be connected to flight systems to see its maximum lifespan.

Project Hermes - CDR

AUTONOMOUS GROUND SUPPORT EQUIPMENT

AGSE: Initial Design

Georgia Tech

- 10 ft. by 4 ft. base
- 1.5 ft. height
- Weight ≈ 60 lbs.
- 3 subsystems
- RPDS: Robotic Payload Delivery System
- RES: Rocket Erection System
- MIS: Motor Ignition System

AGSE: RPDS

- Will locate payload using IR sensors
- Grab payload using gripping claw
- Arms constructed from plywood
- Motor mounts 3-D printed (ABS plastic)
- 5 servo motors

AGSE: RPDS

- Arm will move payload into payload bay
- Payload secured by plastic clips
- Arm will close the magnetically locking hatch

AGSE: RES

Georgia Tech

- Launch vehicle will be raised by a cable and spool system
- Spool will pull in steel cable that runs through the pulley and eye hook
- 1 unipolar Stepper motor

AGSE: MIS

- Rack and pinion system inserts electronic match 12 inches into the motor cavity
- Fixed to the bottom of the guide rail
- Constructed from 1/8 in steel
- 1 bipolar stepper motor

AGSE: Safety

Potential Failure	Effects of Failure	Failure Prevention
Payload is not secured in bay	Payload will bounce inside payload bay, disrupting flight	Test various plastic clip dimensions to find best fit
RPDS stuck inside payload bay	Payload bay will not close and RPDS will be destroyed by raising of the launch vehicle	RES will be started by a signal from the RPDS after it has completed its task
Launch Vehicle moves uncontrollably on the rail	Could disrupt performance of other subsystems	More support along the launch rail to keep the disruptive movement of the launch vehicle at a minimum
RES is not stable while raising	Rocket will not be raised, and potentially the motors will be broken	Test subsystem, add counterweights to reduce necessary force from motor, and add more framing to increase stability

AGSE: Safety

RES is not stable at full extension	Launch vehicle could tip over	Increase the weight to lower the center of gravity. Increase the base width. Add more supports to the launch rail.
RES does not stay upright	Launch vehicle will fall unpredictably	Perfect ratchet system, ensure tension in steel cable
RES stepper motor does not stop	Tension will continue to increase in the cable leading to failure	Emergency stop button in place that activates when rail is at maximum angle
MIS stepper motor does not stop	Rack will move further into motor cavity, possibly damaging motor	Emergency roller switch in place that activates when rack passes a certain distance
Electronics short circuit or are overloaded	System will lose control	Fuses will protect electronics, subscale testing will prevent short circuits and overloads

AGSE: Electronics

- 5 servo motors for RPDS
- 1 unipolar stepper motor for RES
- 1 bipolar stepper motor for MIS
- •1 IR sensor
- 2 roller switches
- 2 LEDS as indicators
- 1 button to start and stop the program
- Controlled by Arduino Uno-R3

AGSE: Power

- System will be powered by 12V- 10.5 Ah lead acid battery
- System can run continuously for 6.37 hours
- Batter can power 47 runs

AGSE: Test Plan Overview

- RES lifting test
 - Ensure that individual components are durable enough to withstand various forces during operation
 - Hold at various positions to simulate pausing
- RPDS payload insertion test
 - Determine the strength of the robotic arm
 - Determine the precision

Questions?

