Georgia Tech NASA Flight Readiness Review Teleconference

Presented By:

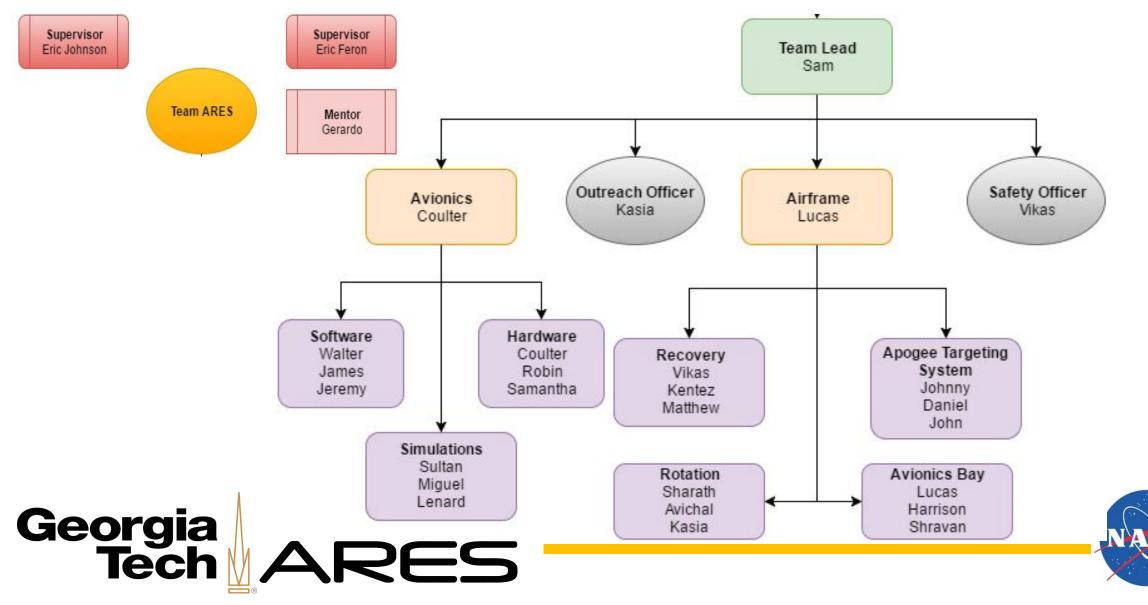
Georgia Tech Team ARES

Agenda

- 1. Team Overview (1 Min)
- 2. Changes Since CDR (1 Min)
- 3. Educational Outreach (1 Min)
- 4. Safety (2 Min)
- 5. Project Budget (2 Min)
- 6. Launch Vehicle (10 min)
- 7. Flight Systems (13 Min)
- 8. Questions (15 Min)

Project KRIOS - FRR

TEAM OVERVIEW


Georgia Tech Team Overview

- 24 undergraduate members
- Highly integrated team across several disciplines
 - Mechanical Engineering
 - Aerospace Engineering
 - Electrical Engineering
 - Applied Mathematics

Georgia Tech

Work Breakdown Structure

Project KRIOS - FRR

CHANGES SINCE CDR

Changes since CDR

Structural Changes

- parachute compartment lengths decreased
- MAS section length increased to maintain same total length and stability

Avionics Changes

• MBED ARM controller now controls Motor Actuation System instead of pixhawk

Project Plan Changes

- Did not Launch March 4th
- Sufficient funding has been acquired

Project KRIOS - FRR

EDUCATIONAL OUTREACH

Educational Outreach

• Peachtree Charter Middle School

Atlanta Science Festival

Engineering Merit Badge

•

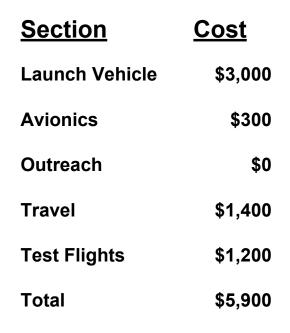
Georgia Tech

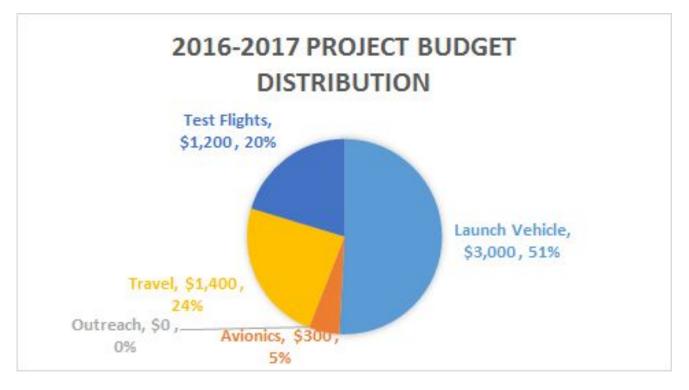
Project KRIOS - FRR

SAFETY

Risk Assessment & Launch Vehicle

- Hazard Identification
 - What has the potential to become a safety hazard?
- Risk and Hazard Assessment
 - What are the potential consequences of the hazard?
- Risk Control and Mitigation
 - What can be done to mitigate the risk?
- Reviewing Assessments
 - Are the mitigations working?

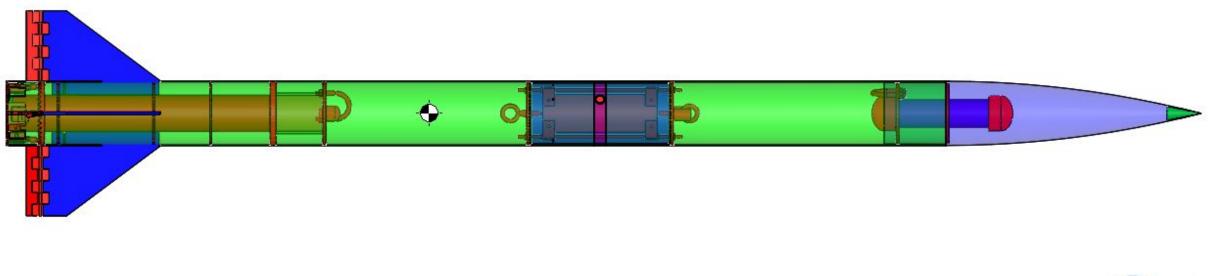

Project Hermes - FRR


PROJECT BUDGET

Project Budget Summary

Project KRIOS - FRR

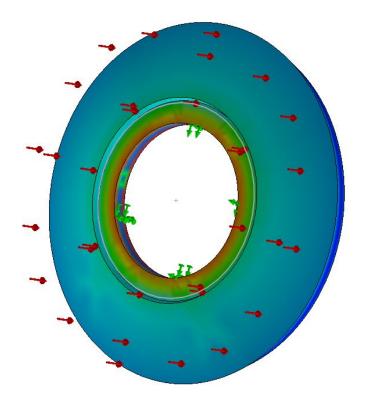
LAUNCH VEHICLE

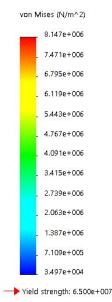


Launch Vehicle Summary

- Predicted apogee: 5284 ft
- Stability margin: 2.56
- Motor: Aerotech L1150

- Rail Exit Velocity: 76.2 ft/s
- Max Mach: 0.57
- Total weight: 541 oz
- Dual deployment with 45in and 120in TFR




- Pressure from Ejection Charges

Bulkhead	Amount of black	Volume of	Pressure on
	powder(grams)	compartment(in ³)	bulkhead (psi)
Main 1	3	594.8	9.9
Main 2	3	594.8	9.9
	5	394.0	9.9
Drogue 1	3	297.4	19.8
Drogue 2	3	297.4	19.8

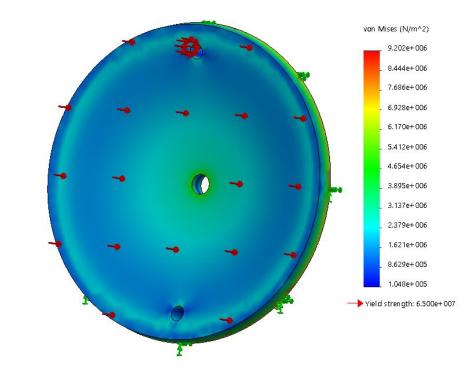

- Pressure from Ejection Charges

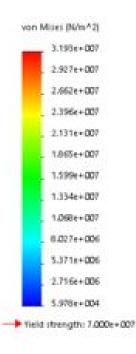
Figure 3.3.2. Main 1 Ejection Charge Test

Figure 3.3.3. Main 2 Ejection Charge Test

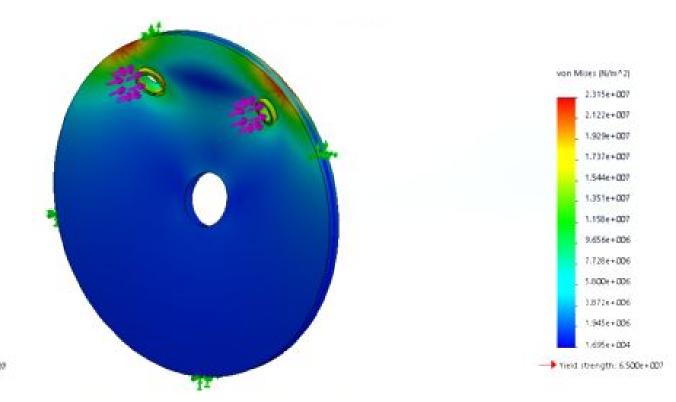
- Force from Parachute Drag

Forces from Main Chute

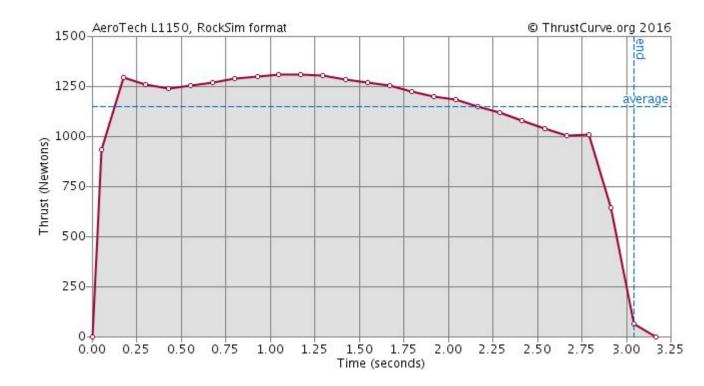
Wind Speed	Mass of	Mass of	Accel	Force (N) on
(mph)	Rocket (kg)	Booster/Avionics	(m/s²)	Main 2
		Bay(kg)		
5	13.232	12.706	78.5	997.421
10	13.232	12.706	78.5	997.421
15	13.232	12.706	78.6	998.711
20	13.232	12.706	78.6	998.711


Forces from Drogue Chute

Wind	Mass of	Accel	Force (N)
Speed	Booster	(m/s²)	on Drogue
(mph)	(kg)		2
5	9.469	78.5	743.296
10	9.469	78.5	743.296
15	9.469	78.6	744.243
20	9.469	78.6	744.243

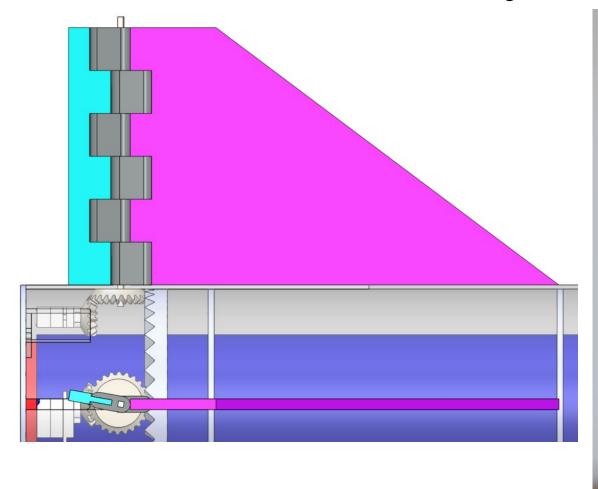

- Force from Parachute Drag

Main 2 Parachute Deployment

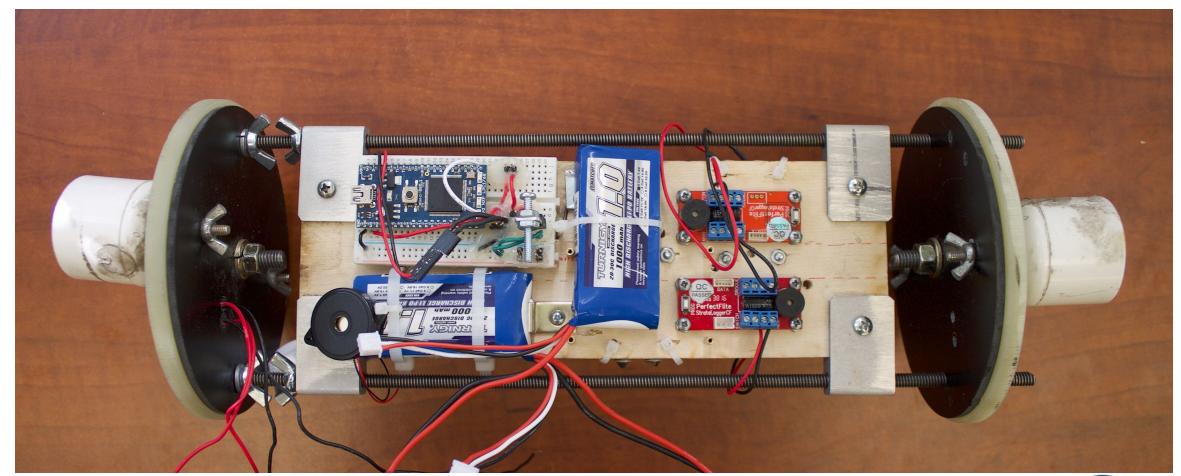

Drogue 2 Parachute Deployment

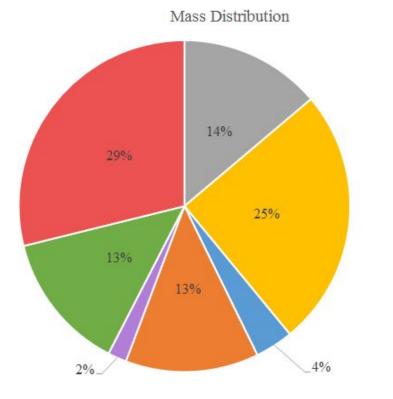
Motor Selection

Aerotech L1150


Aerotech L1150		
Diameter	75.00 mm	
Length	53.1 cm	
Propellant Weight	2065.3g	
Overall Weight	3,673.6g	
Average Thrust	1,102.2 N	
Maximum Thrust	1,309.7 N	
Total Impulse	3,488.6 Ns	
Specific Impulse	<mark>96.9s?</mark>	
Burn Time	3.2s	

Motor Actuation System




Avionics Bay

Mass Breakdown

Structure

- Recovery
- A-Bay
- WATES
- Roll
- Propulsion

Subsystem	Mass (lb)
Nose Cone	4.577
Structure	8.34
Recovery	1.23
A-Bay	4.3
MAS	0.607
Roll	4.49
Propulsion	9.55
Total	33.394

Fabrication Tasks

		Material	Fabrication		Fabrication	Safety
#	Task Description	Handled	Techniques	ΕΤΑ	Locations	Precautions
	3D Print Servo				Inv Studio / AE	
1	Brackets	PLA/ABS	3D Printer	< 1hr	MakerSpace	N/A
	Cut Motor Tube to					
2	Length	Cardboard	Chop Saw	< 1hr	Inv Studio / SCC	N/A
						2 ppl, shop vac,
3	Cut Tubing to Length	Fiberglass	Chop Saw	< 1hr	Inv Studio	N95/P95 mask
	Drill Shear Pin Holes					
4	(8)	Fiberglass	Drill	< 1hr	RR room / Inv Studio	2 ppl, shop vac
5	Drill Rivet Holes (4)	Fiberglass	Drill	< 1hr	RR room / Inv Studio	2 ppl, shop vac
6	Drill wire routing holes	Fiberglass	Drill	< 1hr	RR room / Inv Studio	2 ppl, shop vac
	Drill Holes for Bottom	6061				
7	Plate	Aluminum	Drill	< 1hr	RR room / Inv Studio	
	Slots into Body		Jigsaw/Bandsaw/			2 ppl, shop vac,
8	Tubing	Fiberglass	Chop Saw/Mill	2 hrs	Inv Studio / SCC	N95/P95 mask
					Inv Studio / AE	
9	Cut out Thrust Plate	Plywood	Laser Cutter	< 1hr	MakerSpace	N/A
	Fin Features for			1-2		2 ppl, shop vac,
10	Brackets	Fiberglass	Mill	hrs	BME Shop	N95/P95 mask
	Flap Features for			1-2		2 ppl, shop vac,
11	Brackets	Fiberglass	Mill	hrs	BME Shop	N95/P95 mask

4
4
4
4
4
4
4
4
4
4
4
4 4 4

Thrust-to-Weight Ratio *

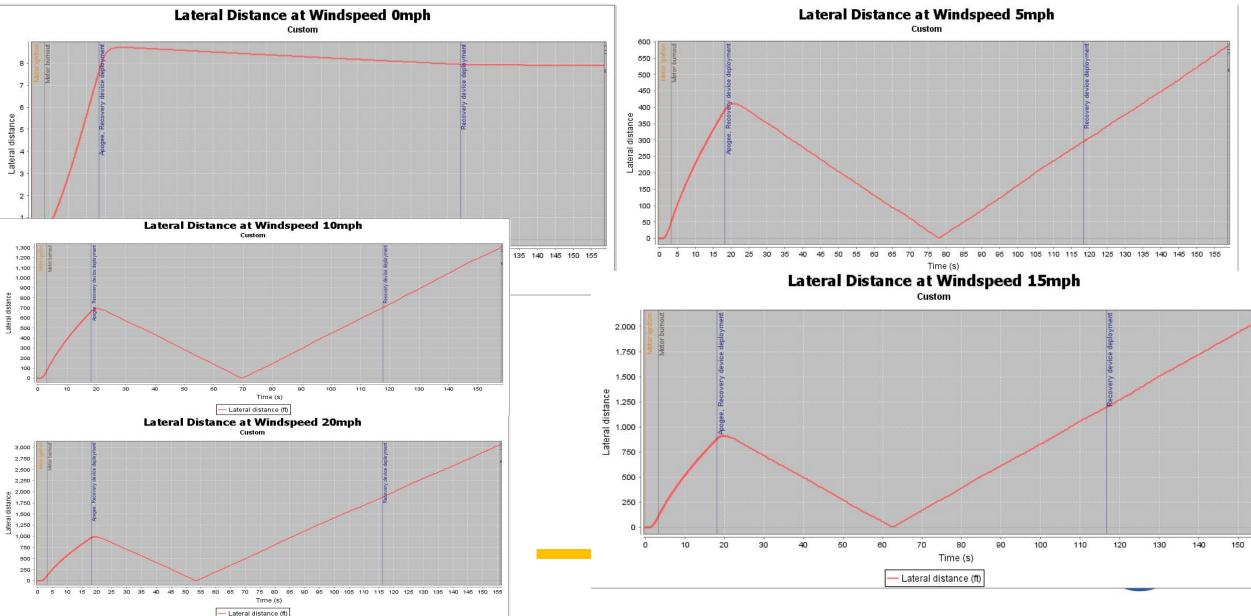
```
Thrust/Weight
Avg. Thrust = 1,102.2 N
Weight = 15.37 kg * 9.81 m/s2
Thrust-to-Weight Ratio =7.312
```


Rocket Flight Stability

Stabi	lity	Ana	lvcie
Jlann	IILY	Alla	17212

Center of Pressure (in from nose)	80.98
Center of Gravity (in from nose)	66.741
Static Stability Margin	2.56
Static Stability Margin (off launch rail)	2.1
Thrust-to-Weight Ratio	7.312
Rail Size and Length (in)	1010, 144 in
Rail Exit Velocity (ft/s)	76.2

Parachutes - Specifications


Sizes	Main: 120" Drogue: 48", composed of risptock nylon	
Recovery Harness Type	Main: TFR, Drogue: TFR	
Length	Main: 16', Drogue 16'	
Descent Rates	68.56ft/s, 18.54ft/s	

Section	Mass(lb)	Kinetic Energy (ft-lbf)
Nose Cone	9.177	49.05
Avionics	7.53	40.27
Booster	16.03	87.32

Mission Performance - Drift Profile

Launch Vehicle Kinetic Energy

Launch Vehicle Section	Velocity (ft/s)	Kinetic Energy (ft-lbf)
Upper Section	18.5	36.5
Avionics Bay	18.5	45.3
Booster Section	18.5	73.14

Calculations:

220oz * 1lbf / 16oz * 1 slug / 32.17lbf = .427 slugs

Ek = .5 * m * v^2 Ek = .5 * .404 slugs * (18.5 ft/s)^2 Ek = 73.14 lbft

Test Plan Overview

	Component	Test	Verification Method
	Roll system	Wind Tunnel	Quantitative Analysis
	Bulkhead strength	Tensile Loading Machine	Quantitative Analysis
	Thrust Plate	Bend test and pressure test to verify rigidity until breaking point.	Quantitative Analysis
	Payload Bay	Payload retention force measurement test.	Quantitative Analysis
	Avionics Bay	Altimeter accuracy and accelerometer performance test.	Quantitative Analysis
	Recovery System	Recovery system ground test fire.	Inspection
	Fins	Fin attachment robustness test along two axis.	Quantitative Analysis
	Launch Vehicle Assembly	Vehicle will be completely assembled under a time constraint to verify efficiency and effectiveness.	Inspection
Georgia Tech	ARE	S	<u> </u>]

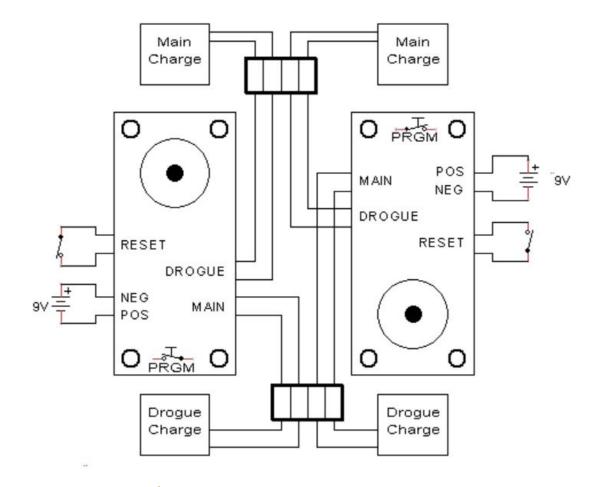
Project KRIOS - FRR

FLIGHT SYSTEMS

Flight Systems: Avionics Main Components

Avionics Components

Part	Function	Software
Eggfinder TX/RX Module	GPS module - used for in-flight telemetry data and post recovery location.	TBD
mbed LPC 1768	Microcontroller - used to actuate servo motors based on in-flight data	Programmed in C++ through the MBED developer.
Pixhawk	Autopilot IMU - used to report, collect, and store data on roll, velocity, and apogee.	Mission Planner flight control GUI
StratologgerCF Altimeter (x2)	Altimeter - Used to deploy Main and Drogue Chute at desired apogee.	Perfectflite datacap



Flight Systems: Responsibilities

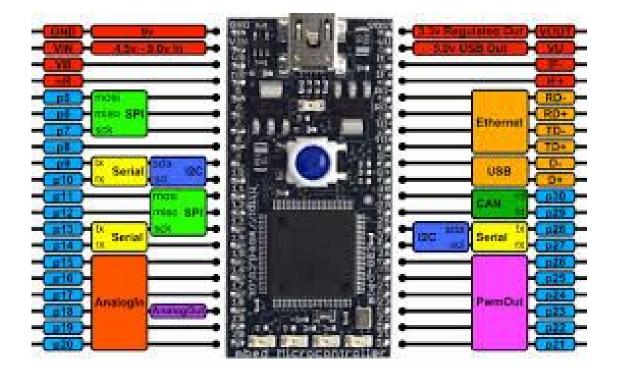
Requirement	Design Feature to Satisfy Requirement	Requirement Verification	Success Criteria
The vehicle will perform a successful recovery	Dual Redundant StratologgerCF altimeter	Sub-scale launch	The rocket is recovered unscathed.
The vehicle will be tracked in real- time to locate and recover it	GPS receiver module will be housed in the vehicle and base station	Full-scale launch	The vehicle will be located quickly using a ground station.
The data of the vehicle's flight will be recorded	Pixhawk will record and store desired parameters	Full-scale launch	The data will be obtainable,, readable, and accurate post recovery
The rocket will perform two complete rolls, followed by a counter roll post motor burnout.	The mbed will actuate motors that drive flaps to induce a roll moment.	Full-scale launch	The rocket rotates at least twice and returns to a zero roll rate in between motor burnout and drogue deployment.

Flight Systems: Recovery

Altimeters are independently powered using 9V DC batteries.

Main and Drogue have dual charge firings with one altimeter delaying its output by one second.

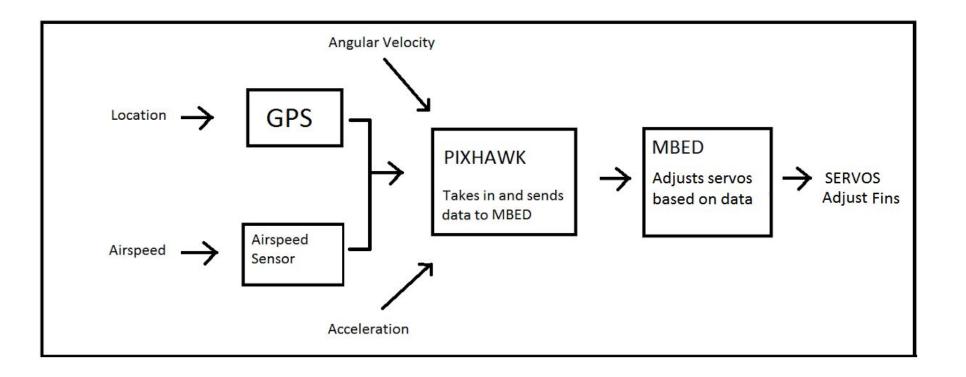
Resets are wired to key switched that protrude from the rocket tube.



Flight Systems: Motor Actuation System

MBED ARM Microcontroller

HS-5085MG High-power servo



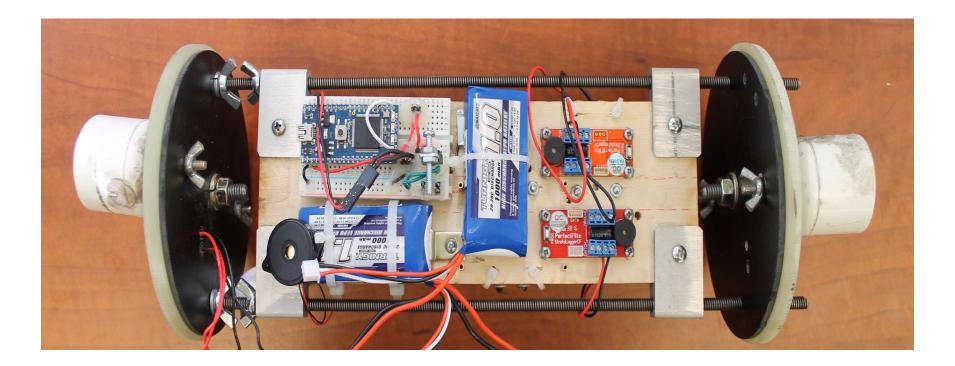
Flight Systems: Motor Actuation System Software

Flight Systems: Data Collection

- Spektrum DSM receiver
- Telemetry (radio telemetry)
- 3 Telemetry (m-screen display)
- 4 1/58
- 5 SPI (social pariphanal interlace) bus
- 5 Power module.
- 7 Salety switch button
- 5. Buzzer
- 9 Serial
- 10 GPS module.
- 1 CAN (controller area network) buts
- 12 PC solities or compass module
- 13 Analog to digital converter 6.6 V
- 14 Analog to digital converter 3.3 V
- 15 LED indicator

Flight Systems: Telemetry

Equipment:


- Eggfinder TX (Transmitter)
- Eggfinder RX (Receiver)

Flight Systems: Power/Safety

Redundancy Safety switches Rail Switch

Flight Systems: Testing Overview

Wind Tunnel: Test Cd of flaps against simulation, and ability for servos to withstand the given pressures

Flight Simulation: Forged flight data will be fed to the sensors and the response efficacy will be analyzed.

Power Consumption: Full charged power supply will be connected to flight systems to see its maximum lifespan.

Questions?

