## Georgia Tech NASA Critical Design Review Teleconference

**Presented By:** 

Georgia Tech Team ARES





### Agenda

- 1. Team Overview (1 Min)
- 2. Changes Since Proposal (1 Min)
- 3. Educational Outreach (1 Min)
- 4. Safety (2 Min)
- 5. Project Budget (2 Min)
- 6. Launch Vehicle (10 min)
- 7. Flight Systems (13 Min)
- 8. Questions (15 Min)





### **Project KRIOS- CDR**

#### **TEAM OVERVIEW**





### Georgia Tech Team Overview

- 24 person team composed of both undergraduate and graduate students
  - Undergraduates: 24
- Highly Integrated team across several disciplines
  - -Mechanical Engineering
  - -Aerospace Engineering
  - -Applied Mathematics
  - -Electrical Engineering





#### Work Breakdown Structure



#### **Project KRIOS - CDR**

#### **CHANGES SINCE PDR**





### **Changes since PDR**

#### Launch Vehicle

- ATS System (now removed)
  - was advanced to satisfy mechanical and stability concerns
  - programming concern, not enough active members to push development
- Roll Inducing Mechanism
  - Servo placement moved to space between 5.5 in tube and Motor tube
  - Gear system used to mechanically prevent misalignment
- Parachute Compartment Resizing
  - Subscale proved that over packing can prevent deployment
  - Compartments have been lengthened using SkyAngle reference sheet + 30% tolerance
- Method of Separation
  - In the Subscale, ejection charges pushed parachutes into compartments
  - New design to ensure charges push parachutes out of separated sections
- New Parachutes  $\rightarrow$  120 in Main, 45 in Drogue (both ~ 0.75 cd)





#### **Changes since PDR**

Flight Systems

• PIXHAW K replacing IMU, gyroscope, and accelerometer, and Teensy

Project Plan

- Subscale Launch Jan 14th
- Outreach details made for Merit Badge clinic and after school program





#### **Project KRIOS - CDR**

#### **EDUCATIONAL OUTREACH**





#### **Educational Outreach**

-Peachtree Charter After School Program

-Boy Scout Merit Badges

-CEISMC GT

-Atlanta Science Festival





#### **Project KRIOS - CDR**

#### SAFETY





### **Risk Assessment & Launch Vehicle**

#### **General Objectives**

- Proper construction and assembly of both the launch vehicle itself and the launch vehicle recovery subsystem.
- The majority of dangers/failures can be dealt with during assembly and construction.
- All risks involved will be mitigated as long as team members follow all safety guidelines while constructing and launching the launch vehicle
- A successful launch will include successful recovery as well as no injuries whatsoever to any team member.





### **Risk Assessment & Launch Vehicle**

#### **Functionality of Areas with High Importance**

- Integrity and Reliability of Recovery System
  - Bulkheads must sustain pressure created by ejection charges
  - Bulkheads must withstand tensile stress of parachutes
  - Shock cord must withstand tensile stresses of both deployments
  - Parachutes and Shock cords must not be damaged from ejection charges
- Integrity of Motor Retention System
  - Thrust plate must easily withstand max thrust delivered by motor
  - Motor retainer must prevent motor from falling out after burnout





### **Risk Assessment & Launch Vehicle**

#### Continued...

- Stability Impacts of Roll Induction Mechanism
  - All flaps must be in same angled position at all times
  - Max servo power draw should never exceed supply
  - Susceptibility of Avionics Equipment to Environmental Effects
  - Altimeters must not be affected by the pressures created by ejection charges





### **Project KRIOS - CDR**

#### **PROJECT BUDGET**





#### **Project Budget Summary**

ICU

| Section        | Cost   | DISTRIB               | UTION            |
|----------------|--------|-----------------------|------------------|
| Launch Vehicle | \$2100 | 1.90%                 |                  |
| Avionics       | \$550  | Test Flights,         |                  |
| Outreach       | \$800  | - \$1,200, 22%        |                  |
| Travel         | \$900  |                       | Launch Vehicle   |
| Test Flights   | \$1200 |                       | \$2,100, 38%     |
| Total          | \$5450 |                       |                  |
|                |        | Travel, \$800,<br>15% |                  |
|                |        | Outreach, \$800       | Avionics, \$550, |
| Georgia 🧹      |        | , 15%                 | 10%              |
|                |        |                       |                  |

#### 2016-2017 PROJECT BUDGET DISTRIBUTION

Creating accurate model for WATES- collected subscale data

Maximum accessibility and minimum setup- redesigned A-bay

Ensuring dual redundancy and parachute deployment- designing larger couplers and better parachute packing systems, offset altimeter charges





### **Project KRIOS - CDR**

#### LAUNCH VEHICLE





### Launch Vehicle Summary

- Predicted apogee: 5297 ft
- Stability margin: 2.47 calibers
- Motor: Cesaroni L1150R
- Main Chute: TFR 120 in, 0.75 cd
- Drogue Chute: TFR 45 in, 0.75 cd

- Shock Cord Size: 1 in Tubular Nylon
- Shock Cord Length: 36 ft total
- Velocity off 8 ft Rail: 61.3 ft/s
- Max Velocity: 0.5767 mach
- Total weight: 545 oz



#### Fins

- Consists of one main fin, one hinge mechanism, and one flap
- Fin and flap are made from fiberglass, hinge mechanism made from strong steel material
- Fin and flap size chosen after analyzing OpenRocket CP locations







### **Roll Control System**

- The launch vehicle is to be outfitted with 4 adjustable fins attached to the end of 4 stationary fins
- large gear ring that will constrain all the variable fins to the same orientation







### **Booster Section**

#### Assembly

- 1. Rings epoxied to exact locations along motor tube
- 2. Thrust plate epoxied to outer 5.5 in tube
- 3. Centering rings epoxied to outer 5.5 in tube
- 4. Then fins can be mounted over bottom centering ring
- 5. Roll induction system installed between 5.5 in tube and motor tube





Materials and Manufacturing:

- Centering Rings: G10 Fiberglass, Waterjet
- Cardboard Tube: Circular Saw
- Thrust Plate: Plywood, Laser Cutter



Verification of integrity under max load



#### **Motor Selection**

#### **Technical Specifications**

- Aerotech L1150
- Diameter: 75mm
- Propellant: APCP
- Casing: RMS 75/3840
- Avg Thrust: 247.4 lb
- Total Impulse: 784.3 lbf-s
- Loaded Mass: 130 oz
- Post-Burnout Mass: 56.7 oz
- Predicted Apogee 5297 ft

#### **Reasons for Selection**

- Higher avg. thrust than other of similar impulse
- More time to control roll-induction mechanism
- Results in most reasonably close apogee
  - Predicted apogee assumes about 65 oz of added mass
  - Unexpected weight of fasteners and epoxy can be compensated by removing from MAS and CG Adjustment system
  - Subscale was heavier than predicted
- No other motor available that came close to same impulse





### **Avionics Bay - Separation**







#### **Avionics Bay - Assembly**



#### **Assembly Description**

- Tray riding on two threaded rods, fixed in place via nuts
- Bulkheads are 2-piece assemblies to make better air seal
- Bulkheads clamped on each side of coupler tube with nuts
- 2 master key switches
- One coupler end has shear pin holes, the other has larger holes for rivets



#### Things Learned From Subscale Launch:

- Wiring both ends of bay become difficult when bulkheads are epoxied in
- Less wire = less chance of tangling and pulling connections loose
- Nuts come loose from vibrations  $\rightarrow$  use loctite



#### **Recovery System**

-Dual Redundancy: 2 Stratologger CFs

-Offset altimeter charge firings

-Main Parachute above Avionics Bay (120")

-Drogue Parachute below Avionics Bay (45")







### **Kinetic Energy at Landing**

Using a 120" main parachute and 45" drogue parachute, the rocket will land at 18.9 ft/s  $KE=.5*m*v^2$ 

 $75 \text{ft-lbf} \ge .5 \text{*m}_{\text{section}} \text{*}(18.9 \text{ft/s})^2$ 

| Section         | Mass (oz) | Kinetic Energy after       | Kinetic Energy after Main |
|-----------------|-----------|----------------------------|---------------------------|
|                 |           | Drogue Deployment (ft-lbf) | Deployment (ft-lbf)       |
| Booster (empty) | 261.7     | 633.63                     | 72.2                      |
| Avionics        | 114.2     | 347.57                     | 39.59                     |
| Nosecone        | 96.8      | 294.62                     | 33.55                     |





#### Mass Breakdown

| Booster Section |           | Avionics Se     | ection    | Nosecone Section  |           |
|-----------------|-----------|-----------------|-----------|-------------------|-----------|
| Total: 334 oz   |           | Total: 114.2 oz |           | Total: 96.8 oz oz |           |
| Components      | Mass (oz) | Components      | Mass (oz) | Components        | Mass (oz) |
| Motor Tube      | 5.73      | 5.5" Tube       | 1.69      | Nosecone          | 17        |
| Centering rings | 8.12      | Coupler Tube    | 22        | Centering rings   | 4.18      |
| Bulkhead        | 6.07      | Avionics Eqpt   | 18        | GPS PVC Tube      | 4.47      |
| Thrust Plate    | 12.1      | Bulkheads       | 11.68     | GPS Package       | 4         |
| MAS             | 50.9      | 5.5" Tube (2)   | 60.8      | CG Adjustment     | 17        |
| Fins            | 23.4      | -               | -         | Main Chute        | 45        |
| Drogue Chute    | 6         | -               | -         | Shock Cord        | 5.61      |
| Shock Cord      | 5.61      | -               | -         | -                 | -         |
| 5.5" Tube       | 73.7      | -               | -         | -                 | 1-        |
| Fin-Spin Mech   | 8         | -               | _*        | -                 | -         |
| Loaded Motor    | 130       | -               | -         | -                 | -         |







# Max thrust from L1150 = 294.4lbs

294.4lbs/34lbs = 8.8





### **Rocket Flight Stability**

|                                                                      |   | Variable           | Value     |                                                             |
|----------------------------------------------------------------------|---|--------------------|-----------|-------------------------------------------------------------|
|                                                                      |   | Stability          | 2.6 cal   |                                                             |
|                                                                      |   | Centre of Gravity  | 67.887 in |                                                             |
|                                                                      |   | Centre of Pressure | 82.346 in |                                                             |
| Pockt<br>Lengh 102 n, max. demeter 5.56 m<br>Mess with motors 1543 g | · |                    |           | Stability: 2.6 cal<br>COS7.897 m<br>COS7.897 m<br>at MRD.30 |
| Georgia<br>Tech                                                      |   |                    | NASA      |                                                             |

### **Mission Performance – Flight Profile**



| Event                    | Time(s)     | Altitude<br>(ft) | Total<br>velocity<br>(ft/s) | Total<br>acceleration<br>(ft/s <sup>2</sup> ) | Drag<br>force<br>(N) | Drag<br>coefficient |
|--------------------------|-------------|------------------|-----------------------------|-----------------------------------------------|----------------------|---------------------|
| Ignition                 | 0           | 0                | 0                           | 13.36                                         | 0                    | 0.59769             |
| Lift Off                 | 0.06        | 0.086            | 4.886                       | 174.3                                         | 0.014                | 0.57316             |
| Launch rod<br>disengaged | 0.2182<br>5 | 3.413            | 39.28                       | 241.98                                        | 0.727                | 0.4485              |
| Burnout                  | 3.175       | 1149.            | 637.9                       | 74.45                                         | 172.4                | 0.49114             |
| Apogee                   | 18.32       | 5289.            | 14.43                       | 31.77                                         | 0.044                | 0.50164             |
| Drogue Chute             | 18.38       | 5289.            | 20.22                       | 31.96                                         | 13.51                |                     |
| Main<br>Parachute        | 94.85       | 711.2            | 58.77                       | 0.235                                         | 131.2                |                     |
| Ground Impact            | 165.03      | -2.1046          | 10.867                      | 6.53                                          | 153.62               |                     |



#### Mission Performance - Drift Profile Drift Profile at Windspeed 10mph Drift Profile at Windspeed 10mph







#### **Subscale Launch Results**



### Subscale Launch Results- Design Changes

- Avioinics Bay rehaul- more accessibility
- WATES effective system
- Offset altimeter deployment signals
- Smaller keyswitches
- Switching main and drogue parachute locations





### **Project KRIOS - PDR**

#### **FLIGHT SYSTEMS**





### **Flight System Responsibilities**

#### **Outline of Success Criteria**

| Requirement                                                           | Design Feature to Satisfy<br>Requirement                             | Requirement Verification | Success Criteria                                                                      |
|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|
| The vehicle shall not exceed an apogee of 5,280 feet                  | Calculated rocket mass                                               | Full-scale flight test   | Apogee within 1% of target                                                            |
| The vehicle will be tracked in real-<br>time to locate and recover it | Eggfinder GPS module will be<br>used in the vehicle and base station | Full-scale flight test   | The vehicle will be located on a map after it lands for recovery                      |
| The data of the vehicle's flight will be recorded                     | Pixhawk has sd card storage                                          | Full-scale flight test   | The data will be recovered and readable after flight                                  |
| The vehicle will complete a moment and counter moment inducing roll   | Pixhawk servo rail will<br>strategically actuate motor system.       | Full-scale flight test   | Rolling at least 2 full rotations, and rotating the other way to the initial position |





### **Flight Systems: Avionics**

**Avionics Components** 

| Part                   | Function                                                           |
|------------------------|--------------------------------------------------------------------|
| Stratologger SL100     | Altimeter - used to receive and record altitude                    |
| Pixhawk px4            | Autopilot control system. equipped with 9 DOF MEMS and 14 pwm_out. |
| Air Speed sensor       | Reports exterior air speed. USeful for roll calculations.          |
| Eggfinder TX/RX Module | GPS module - used to track the rocket in real time                 |
| 9V Alkaline Batteries  | Used to power all Avionics components and ATS                      |





### **Flight Systems: Avionics**

**Recovery System** 





- Spektrum DSM receiver
- 2 Telemetry (radio telemetry)
- 3 Telemetry (on-screen display)
- 4 USB
- 5 SPI (serial peripheral interface) bus
- 6 Power module
- 7 Safety switch button
- 8 Buzzer
- 9 Serial
- 10 GPS module
- 11 CAN (controller area network) bus
- 12 I<sup>2</sup>C splitter or compass module
- 13 Analog to digital converter 6.6 V
- 14 Analog to digital converter 3.3 V
- 15 LED indicator





#### **Flight Systems: Ground Station**



#### **Equipment:**

- Eggfinder TX (Transmitter)
- Eggfinder RX (Receiver)





#### **Payload Integration**

- Roll Control- 4 servos hooked up to power and Pixhawk in Avionics bay through disconnectable wiring lining down the booster section
- Altimeters hooked up to ejection charges in coupler sections
- Servos connected to shafts turning the fin flaps







- Pixhawk controls servos actuating roll control flaps
- GPS sending signals to a ground receiver
- Altimeters hooked up to ejection charges in coupler sections





#### Flight Systems: System Block Diagram









- 9-volt alkaline batteries will be used independently to power each stratologger altimeter as well as the Pixhawk
- High torque servo motors will be used to actuate roll flaps. An independent 7.4V NiMH source will be used to power the servo rail.









### **Flight Systems: Testing Overview**

Wind Tunnel: Test flap actuation under load

**Flight Simulation:** simulated flight data will be tested for run-time efficiency to ensure that calculations can be completed both accurately and timely.

**Power Consumption:** Full charged power supply will be connected to flight systems to see its maximum lifespan. ANSYS

Stress Tests -Bulkheads, Thrust Plate

**Ejection Charges** 







# Questions?



