Milestone Review Flysheet 2017-2018

Institution Georgia Institute of Technology

Vehicle Properties			
Total Length (in)	107		
Diameter (in)	5.562		
Gross Lift Off Weigh (lb.)	37.38		
Airframe Material(s)	G12 Fiberglass		
Fin Material and Thickness (in)	G10 Fiberglass (0.25")		
Coupler Length/Shoulder Length(s) (in)	6-Dec		

Stability Analysis			
Center of Pressure (in from nose)	82.64 (at rail exit)		
Center of Gravity (in from nose)	71.33 (at launch)		
Static Stability Margin (on pad)	2.08		
Static Stability Margin (at rail exit)	2.09		
Thrust-to-Weight Ratio	8.26 (at launch)		
Rail Size/Type and Length (in)	1010 / 120 in		
Rail Exit Velocity (ft/s)	71.7		

Recovery System Properties				
	Drogue Parachute			
Ma	nufacturer/Mo	odel	Apogee 29095	
Size	/Diameter (in c	or ft)	36 in	
Altitud	de at Deployme	ent (ft)	At Apogee	
Velocity at Deployment (ft/s)			17.375	
Terminal Velocity (ft/s)			72.5	
Recovery Harness Material			Tubular Nylon	
Recovery Harness Size/Thickness (in)			9/16in dia	
Recovery Harness Length (ft)		20		
Harness/Airframe Interfaces		Quicklink to Eyebolt		
Kinetic Energy of Each Section (Ft-lbs)	Section 1	Section 2	Section 3	Section 4
	671.56	1360.5	326.64	/

Recovery Electronics		
Altimeter(s)/Timer(s)	PerflectFlight Stratologger CF	
(Make/Model)	Altimeters	
Redundancy Plan and Backup Deployment Settings	Two altimeters will be used	
Pad Stay Time (Launch Configuration)	2 hours minimum	

Milestone	CDR

Motor Properties			
Motor Brand/Designation	Aerotech L1390G		
Max/Average Thrust (lb.)	370.89 / 305.63		
Total Impulse (lbf-s)	887		
Mass Before/After Burn (lb.)	8.54 / 4.2		
Liftoff Thrust (lb.)	300		
Motor Retention Method	Threaded Retainer		

Ascent Analysis			
Maximum Velocity (ft/s)	669		
Maximum Mach Number	0.6		
Maximum Acceleration (ft/s^2)	294		
Predicted Apogee (From Sim.) (ft)	5434		

Recovery System Properties					
	Main Parachute				
Ma	nufacturer/Mo	odel	Fruity Chutes/IFC-96		
Size	/Diameter (in o	or ft)	96 in		
Altitude at Deployment (ft)			500		
Velocity at Deployment (ft/s)			70.6		
Terminal Velocity (ft/s)			15.5		
Recovery Harness Material			Tubular Nylon		
Recovery Harness Size/Thickness (in)			9/16in dia		
Recovery Harness Length (ft)		gth (ft)	20		
Harness/Airfra	ame Interfaces	Quicklink to Eyebolt			
Kinetic	Section 1	Section 2	Section 3	Section 4	
Energy of Each Section (Ft-lbs)	30.68	62.18	14.92	/	

Recovery Electronics			
Rocket Locators (Make/Model)	inder TX and RX		
Transmitting Frequencies (all - vehicle and payload)	2.5 GHz, 900 MHz, 433 MHz		
jection System Energetics (ex. Black Po		FFFF BlackPowder	
Energetics Mass - Drogue	Primary	1.5	
Chute (grams)	Backup	1.5	
Energetics Mass - Main	Primary	2.25	
Chute (grams)	Backup	2.25	
Energetics Masses - Other	Primary	N/A	
(grams) - If Applicable	Backup	N/A	

Milestone Review Flysheet 2017-2018

Institution Georgia Institute of Technology Milestone CDR

	Payload				
	Overview				
Payload 1 (official payload)	The Rover Payload comprises of a Rover vehicle that is capable of autonomous movement and unfolding solar panels, as well as a deployment mechanism to remove the vehicle from the rocket body. During flight, the rover is housed within the body of the rocket. After landing, it is the function of the deployment system to get the rover out of the rocket and onto the ground so it can complete its mission.				
	Overview				
Payload 2 (non-scored payload)	The purpose of the Apogee Target System (ATS) is to adjust the apogee of a rocket by providing additional drag force after the burnout. Considering the unpredictability of external factors such as wind gust that cannot be simulated, it is crucial to a system that can adjust any deviation from ideal flight. Variable drag force is provided by adjusting surface areas by actuating flaps, which are controlled by motors and integrated board.				

	Test Plans, Status, and Results				
Ejection Charge Tests	The ejection system of the rocket is controlled by the StratologgerCF altimeters that output a high current to an electric match. A black powder charge that blows out the chutes is ignited by this process. The altimeters will be tested through a barometric pressure chamber equppied with LED mock charges. The black powder charges were tested and recorded at the subscale launch, which was on Saturday November 18th.				
Sub-scale Test Flights	A subscale rocket was launched November 18th with fully functioning sensors and recovery system, and a prototype design of our Apogee Targeting System. The launch was conducted in an approved event and area in Taledega, Alabama. Our mentor with level 2 cerficiation and our safety officer were both present. The launch was successful, but the Apogee Targeting System did not deploy properly, due to an error in the software. In addition, ground testing of the Rover Deployment System was successfully completed.				
Full-scale Test Flights	The full scale rocket will be launched tentatively in late January. It will be conducted at an approved event and area in most likely Alabama, with our mentor with level 2 NRA certification and our safety officer both present. Full functionality will be present on all systems, and a thoroughly tested recovery system with dual redundancy will be employed.				

Milestone Review Flysheet 2017-2018

Institution	Georgia Institute of Technology	Milestone	CDR
	Additional Cor	· · · · · · · · ·	
	Adultional Col	iments	