

2017-2018 NASA STUDENT LAUNCH CRITICAL DESIGN REVIEW JANUARY 24TH, 2017

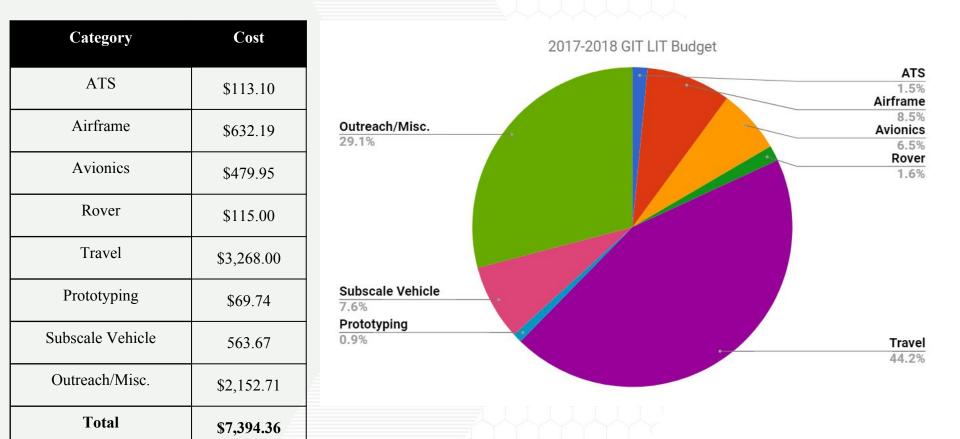
CREATING THE NEXT®

AGENDA

- 1. Project Plan Update (5 Min)
- 2. Launch Vehicle (10 min)
- 3. Payload ATS (5 Min)
- 4. Payload Rover (5 Min)
- 5. Flight Systems (10 Min)
- 6. Test Plans and Procedures (2 Min)
- 7. Requirements and Verifications (3 Min)
- 8. Sub-scale Flight (10 Min)
- 9. Questions (15 Min)

Project Plan Update

Educational Outreach



- 1. Peachtree Charter Middle School
- 2. Boy Scout Merit Badge: Robotics!
- 3. CEISMC GT (Center for Education Integrating Science, Mathematics and Computing)
- 4. Atlanta Science Festival

Project Budget Summary

Project Funding

Sponsor	Contribution	Date		
2016-2017 Unused Funds	\$1,775.23			
Georgia Space Grant Consortium	\$4,000	November 2017		
Alumni Donations	\$200 (est.)	December 2017		
Georgia Tech School of Aerospace Engineering	\$2,500 (est.)	January 2018		
Corporate Donations	\$1,000 (est.)	January 2018		
Orbital ATK Travel Stipend	\$400 (est.)	April 2018		
Total	\$9,875.23 (est.)			

New Emphasis in Documentation

- Emphasis on safety
 - Not just hazards, but mitigation strategies and how they pose a risk to our team/launch vehicle
 - Specific procedures for manufacturing and testing
- Team-derived requirements, and SMART verification goals and plans for these requirements

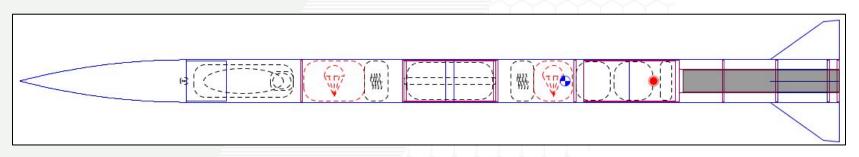
Hazard	Causes	Impacts	Risk	Mitigation Strategy		
	Signal interference					
Rover deployment	Coding error	Creates highly unstable flight leading to loss of		Rover deployment system does not actuate unless		
actuates during flight	Improper wiring	vehicle, Challenge	1C	sensors indicate that the		
	Component failure in a non safe mode	ent failure in a incomplete		rocket has landed		
	Pre-existing crack propogation	Slight imbalance affecting		Deployment mechanism		
Rover deployment mechanism structural failure	Delamination of printed material	flight path, Premature rover deployment, Rover	2D	components will undergo structural testing to ensure they can withstand		
	Adhesive improperly mixed and set	unable to deploy, Challenge incomplete		all loads with a factor of safety of 2		
	Hard impact with ground					

PDR Action Items

- Air brakes must be aft of CG
 - They already were, we went back and re-confirmed that they are ~9in apart

Launch Vehicle

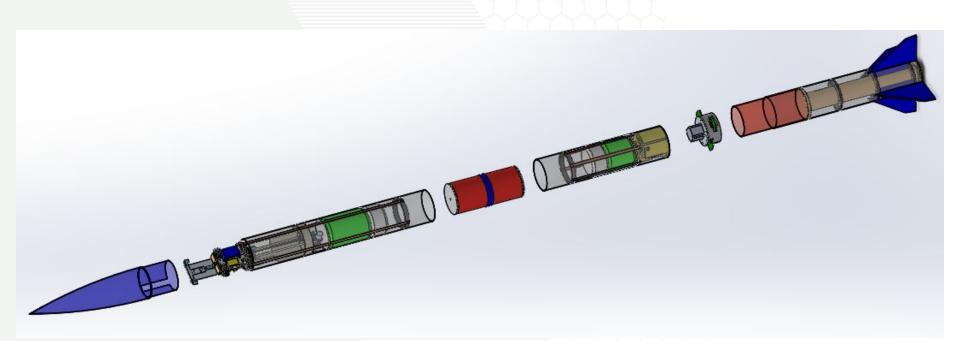
Final Launch Vehicle Dimensions


Overall Specifications

Mass Breakdown

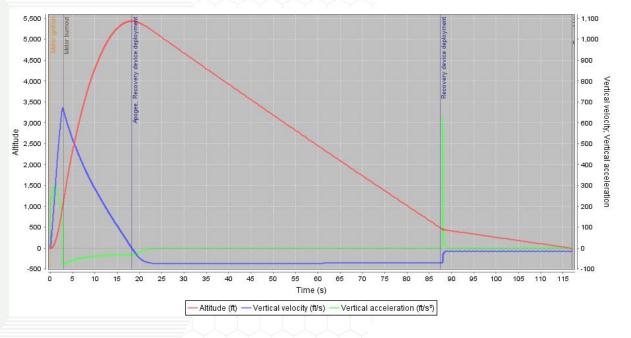
Overall Specs	Value	
Overall Length	107 in	
Launch Vehicle Diameter	5.562 in	
Overall Mass	37.38 lb	
Center of Gravity (measured from nose cone)	71.336 in	
Center of Pressure (measured from nose		
cone)	82.897 in	

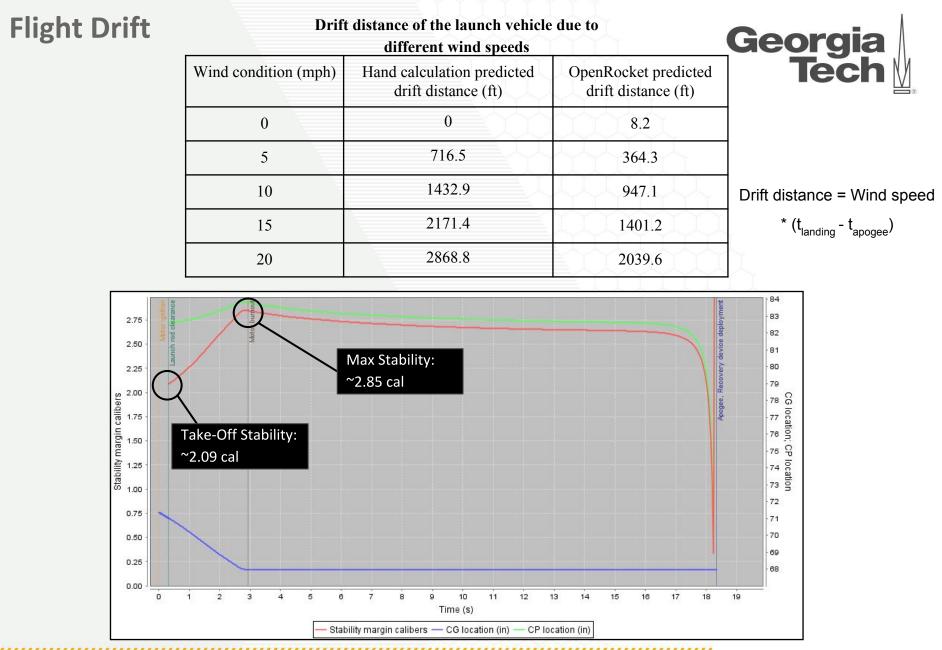
Section	Mass (lb)	Length (in)
Nose cone	1.06	21.75
Rover housing section	8.69	34.00
Avionics bay	4.00	12.50
ATS section	7.13	23.00
Booster section	16.50	27.40


Final OpenRocket model

CREATING THE NEXT°10

Launch Vehicle Exploded View


Location	Separation Mode	Separation Event		
Nose Cone + Rover Tube	Supporting beams from rover tube	Rover deployment		
Rover Tube - Avionics Bay	Shear Pins	Main parachute deployment		
Avionics Bay - ATS Tube	Shear Pins	Drogue parachute deployment		
ATS Tube + Booster Stage	Rivets	Not applicable		


Flight Ascent Performance

Flight Performance

Property	Value
Center of Gravity	71.336 in
Center of Pressure	82.897 in
Apogee altitude	5434 ft
Maximum velocity	669 ft/s
Maximum acceleration	294 ft/s ²
Rail exit velocity	71.7 ft/s
Thrust-to-weight ratio	8.26
Ground hit velocity	16.3 ft/s

CREATING THE NEXT[®]13

Recovery overview

Parachute specifications

Property	Main	Drogue
Diameter	96 in	36 in
Material	Ripstop Nylon	Ripstop Nylon
Shape	Toroidal	Octagon
Coefficient of Drag	2.2 Cd	0.8 Cd
Velocity at deployment	70.6 ft/s	17.3 ft/s

Shock cord specifications

Property	Value
Material	9/16 in Tubular nylon
Length	240 in

Kinetic energy at landing

Section	Value (ft/lb)
Nose cone + Rover housing	30.68
Avionics Bay	62.18
ATS + Booster	14.92

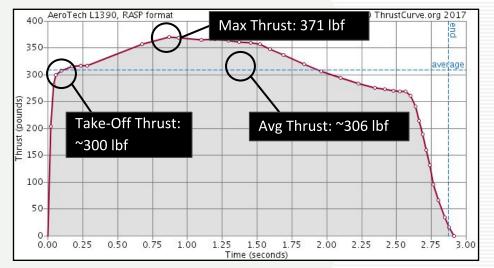
CREATING THE NEXT[®]14

Booster Section Overview

CREATING THE NEXT®15

Mass Breakdown by Component

Component	Material	Mass (oz)	Location (ir)	
		W1055 (02)	Location (in)	Rivets 4x
Coupler	G12 fiberglass	22.00	0.00	
Body tube	G12 Fiberglass	46.80	6.00	½" Thrust Plate
Thrust plate	G10 Fiberglass	4.13	12.00	L1390G Motor
Motor mount tube	White kraft paper	6.76	12.50	
Centering ring	6061-aluminum	1.35	12.15, 19.15, 25.9	RMS 75-3480 Casing
Fin (x3)	G10 Fiberglass	9.55	31.90	
Retention ring	6061-aluminum	5.79	27.15	Al Centering Ring 3x
Motor (with propellant)	N/A	136.83	6.5	G10 ¼" Fins 4x


Al Retention Ring

Final Motor Choice

AeroTech L1390 G-P Specifications

Property	Value			
Diameter	2.95 in (75.0 mm)			
Length	20.87 in (530.10 mm)			
Total mass	136.72 oz (3876 g)			
Propellant mass	69.60 oz (1973 g)			
Average Thrust	305.63 lbs (1359.49 N)			
Maximum Thrust	370.90 lbs (1649.83 N)			
Total Impulse	887 lbf · s (3946 N · s)			
Burn time	2.91 s			

AeroTech L1390 G-P Thurst curve

CREATING THE NEXT°16

Airframe Failure Modes and Effects Analysis

Components	Function	Failure	Potential Causes	Detection Method	Impact	Severity (1-3)	Detectio n Difficult y (1 -3)	Probabili ty (1 - 3)	Risk (1-27)	Risk Priority Number (Risk/27)
Bolts and nuts	holds components	threadlocker breaks and twists out	Vibration	N/A	Components may be disassembled; Due to imbalanced force, moment is created	3	3	3	27	1.00000
			Faulty Wiring	Check wiring before flight	ATS is not actuated	2	1	1	2	0.07407
Motor board	received signal from Pi and actuates motor	cannot actuate motor	Faulty Board	Run simulation before flight to check the board	ATS is not actuated/ actuated at wrong time	3	1	1	3	0.11111
Ring Connector	connects motor driver to stepper motor	connection severs	vibration	N/A	ATS is not actuated	2	1	3	6	0.22222
		explosion	- motor manufacture error	N/A	- rocket disintegrates -rocket falls to the ground	3	1	1	3	0.11111111 11
Motor	Provides thrust	no ignition	- ignition wire not connected properly to the motor	N/A	- rocket does not fly	3	1	1	3	0.11111111 11
Thrust plate	Prevents the motor from damaging other sections of the rocket	structural integrity fails	- material used to make thrust plate was already compromised	N/A	- motor shoots through rocket, damaging all systems	3	1	1	3	0.11111111 11
Centering rings	Aligns the motor to the launch vehicle	all breaks during flight	 epoxy failed material used did not have enough strength 		- motor tilted, forcing the rocket to arc	2			0	0
Fins	Provides aerodynamic forces to the rocket for stability	fin(s) separate(s) during flight	- epoxy failed	N/A	 the rocket losses stability the rocket may arc during flight 	3	1	2	6	0.22222222 22

CREATING THE NEXT[®]17

Vehicle FMEA

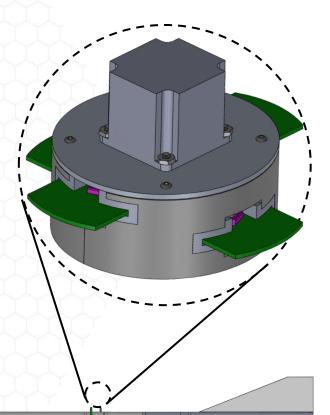
Georgia Tech

CREATING THE NEXT®18

Hazard	Causes	Impacts	Risk	Mitigation Strategy
Structural cracks in the body airframe	heat from motor			insulate motor from airframe body
	impulses from parachute deployment	rocket buckles mid-flight and make the rocket fail and not land safely	1C	verify there are no cracks in body before launch
thrust plate structural integrity fails	material used to make the thrust plate was already compromised and wasn't checked before manufacturing			verify there are no cracks in thrust plate before it is inserted into body
	epoxy used to secure thrust plate failed	motor shoots through rocket, damaging all systems	1B	use enough epoxy to establish acceptable factor of safety
motor explodes	motor manufacture error			verify motor housing and mount are free of defects before insertion into the body
	inappropriate propellant was used	rocket disintegrates or falls uncontrollably to the ground, most if not all subsystems useless	1B	verify that the correct propellant was selected, order and used

The remainder of the Vehicle FMEA can be found in the CDR Documentation

Payload - ATS

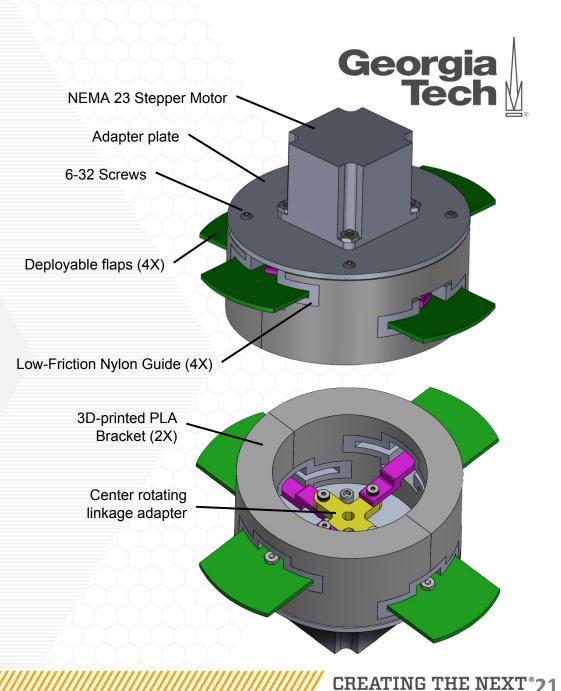

ATS Payload Overview

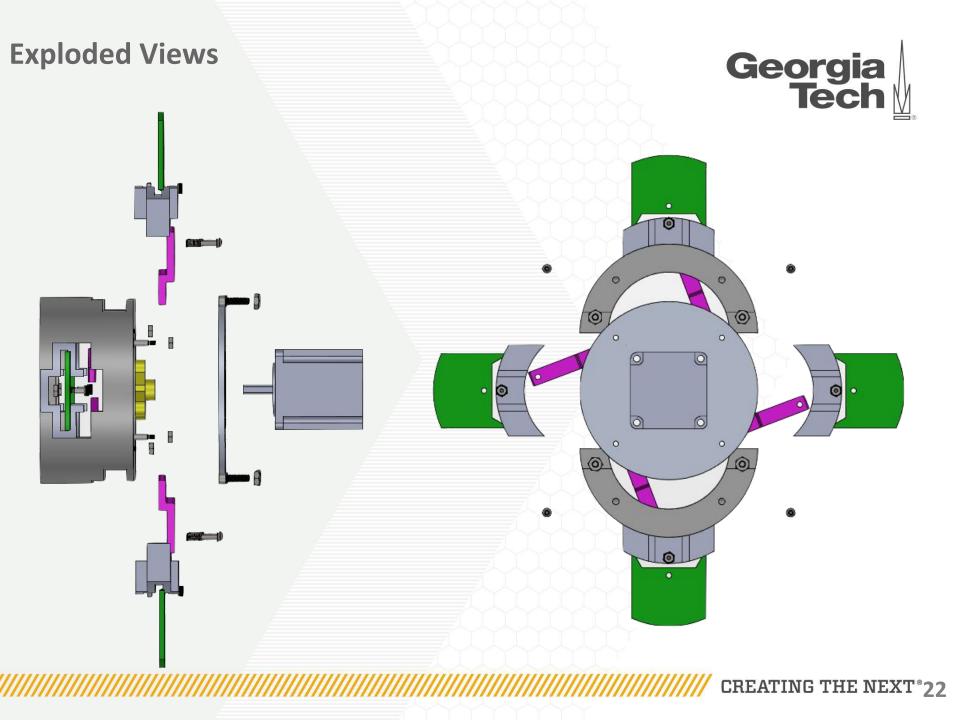
Purpose - Actively deploy set of drag surfaces to control and target an apogee of 5280 ft

Method of Operation - 4-bar linkage mechanism controlled by stepper driver. Stepper driver operated from a Raspberry Pi that in actively predicting vehicle flight path using altitude data from the Altimeters, and acceleration data from the Sense HAT Accelerometer

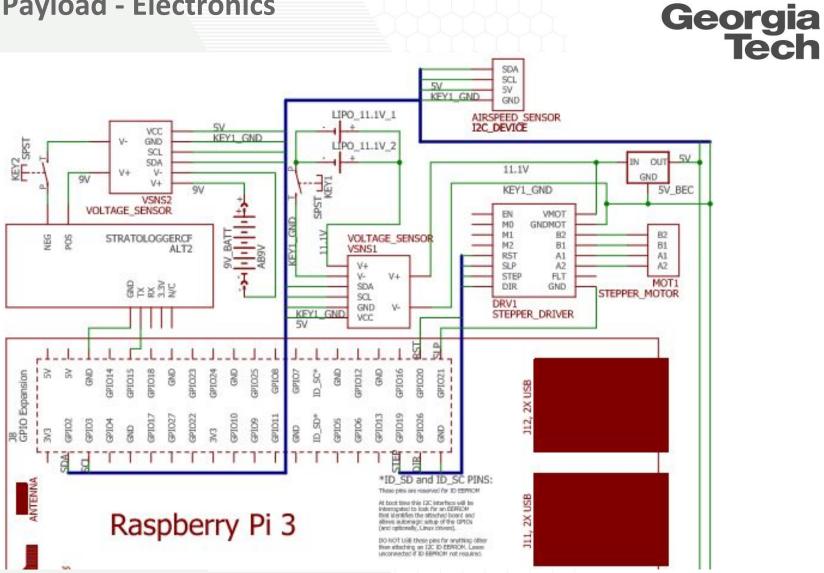
Component	Material	Mass (oz)	Location (in)
Body tube	G12 fiberglass	35.50	0.00
Drogue Chute	Ripstop nylon	2.54	9.375
Shock cord	Tubular nylon	3.44	7.375
Bulkhead	G10 fiberglass	9.10	14.375
ATS system	N/A	32.60	14.75

CREATING THE NEXT®20

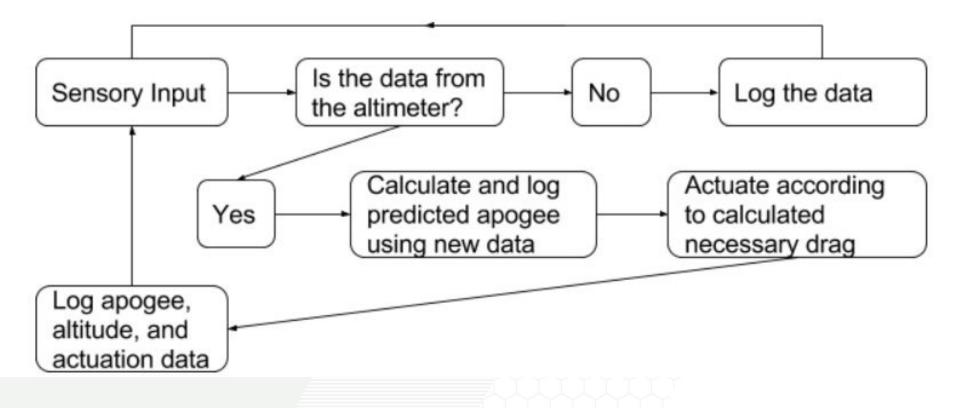

ATS Payload - Mechanics


Linkage

- 4-bar linkage
- Mechanically bound to prevent uneven flap deployment
- Shoulder screws to join linkage bars and minimize friction
- ¹/₈" Aluminum flaps
- Motor shaft directly drives center rotating linkage adapter

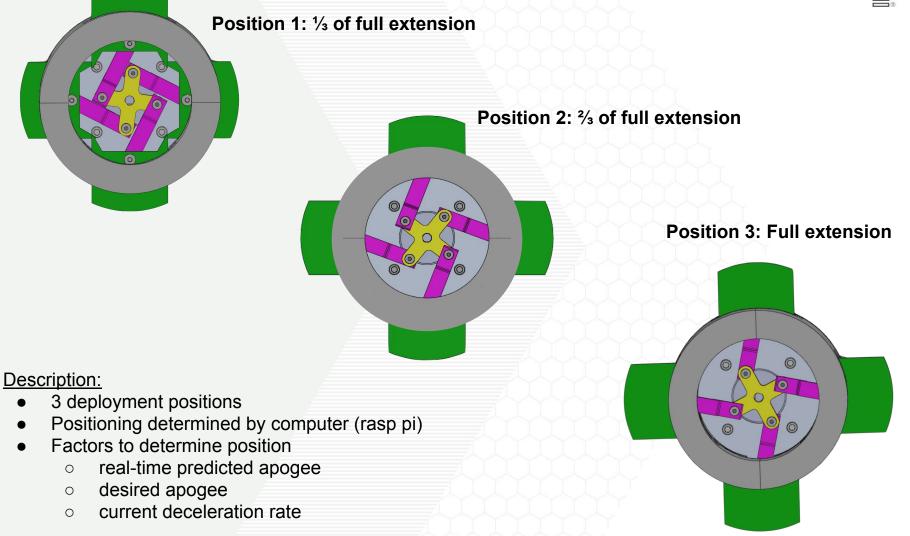

Bracket

- Safety Factor > 2 everywhere
- PLA 3D printed brackets to house linkage bar
- Nylon guides glued in to minimize friction with flaps


ATS Payload - Electronics

CREATING THE NEXT°23

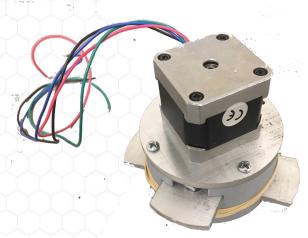
ATS Software Flowchart



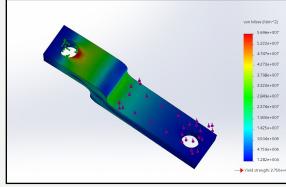
CREATING THE NEXT[®]24

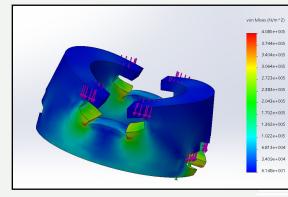
ATS Payload - In-flight functionality

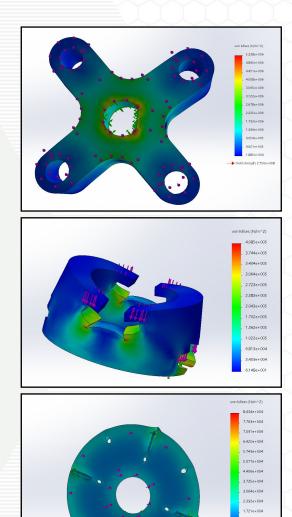
CREATING THE NEXT°25



Demonstration of Prototype







FEA Simulations - ATS

1.050e+004

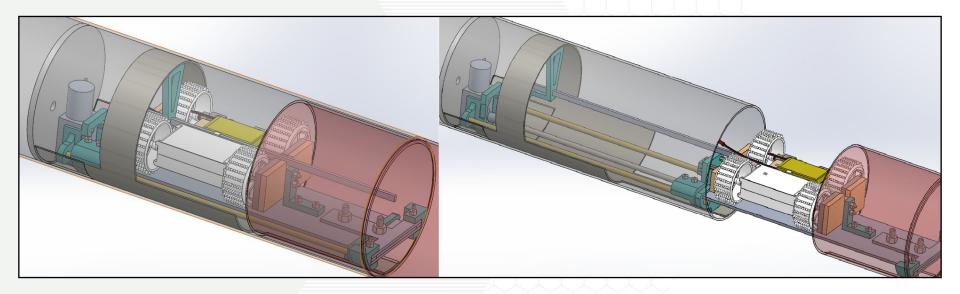
Yield strength: 2.75De+00

- Design requirement: FOS > 2
- FEA completed on each part to observe stress concentrations and deformation regions
- Highest stress occurs when fully deployed

// CREATING THE NEXT[®]27

CREATING THE NEXT[®]28

Payload - Rover


Rover Deployment

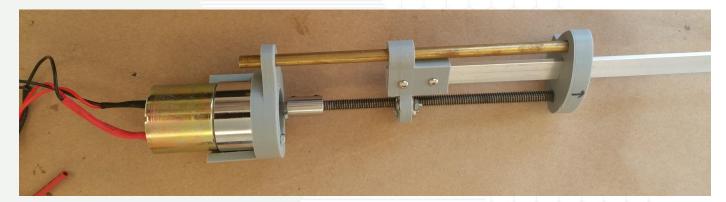
CREATING THE NEXT[®]29

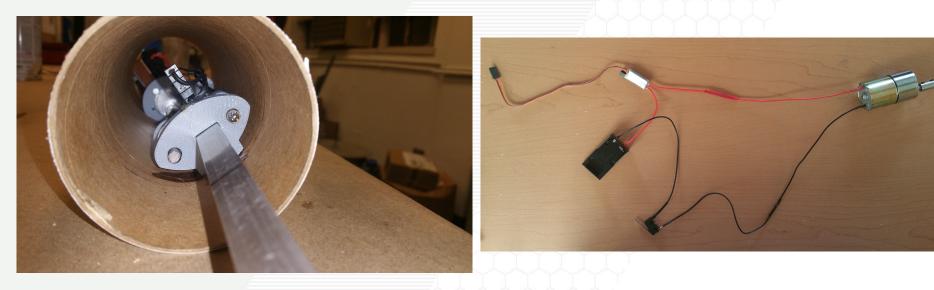
Final design decision: Axial lead screw

Chosen for its mechanical simplicity, payload safety, and and reliability

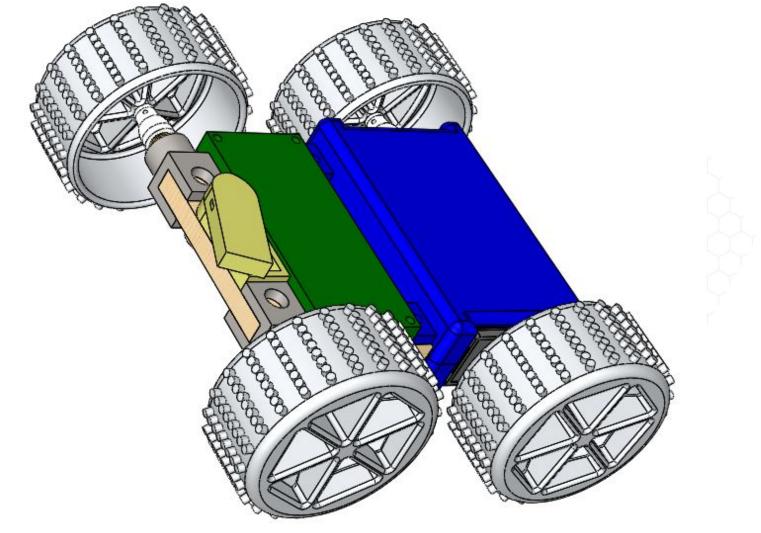
Deployment Exploded View

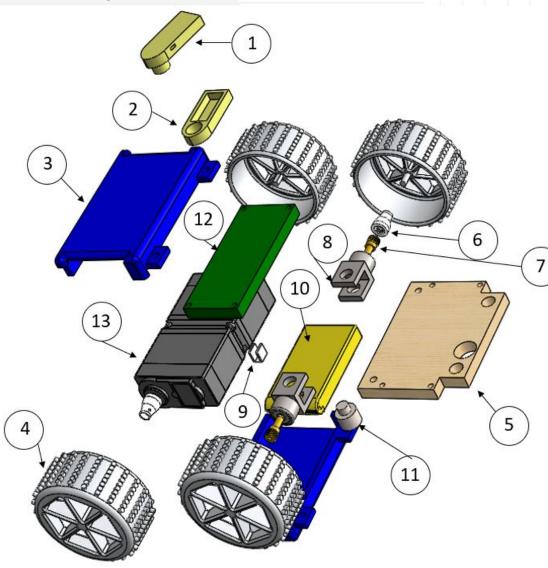
Number	Component	Number	Component	Number	Component
1	Bulkhead	6	Rover Bay Tube	11	Motor Bracket
2	Rover Rail	7	Pusher	12	Tray
	Bracket	8	Nose Cone	13	Guide Rails
3	Rover Rail	9	Nose Cone Bracket	14	Carriage
4	Threaded Rod				
5	Pusher	10	10 Deployment Motor	15	Support Plate
			16	Front Support Bracket	


CREATING THE NEXT°30


Rover Deployment

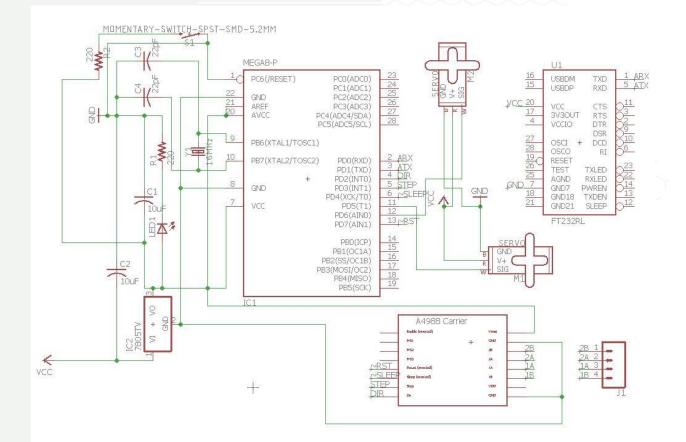
CREATING THE NEXT°31


Prototyping: Lead Screw Mechanism



Rover Assembly

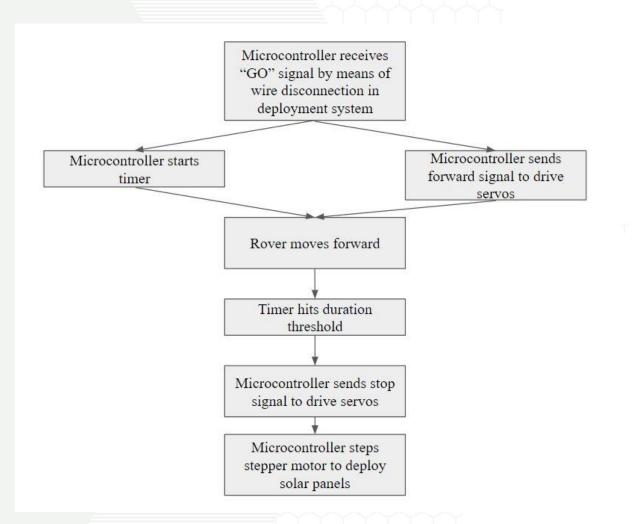
Rover Exploded View



1	Solar Panel Housing Top	
2	Solar Panel Housing Bottom	
3	Servo Mount	
4	Wheel	
5	Base Plate	
6	Servo Horn / Wheel Adapter	
7	Front Wheel Axle	
8	Bearing Mount	
9	Rover Detachment Bracket	
10	Battery	
11	Solar Panel Stepper Motor	
12	Control Board	
13	Servos	

/////// CREATING THE NEXT°33

Rover Controller Layout



CREATING THE NEXT[®]34

Rover Software Block Diagram

CREATING THE NEXT[®]35

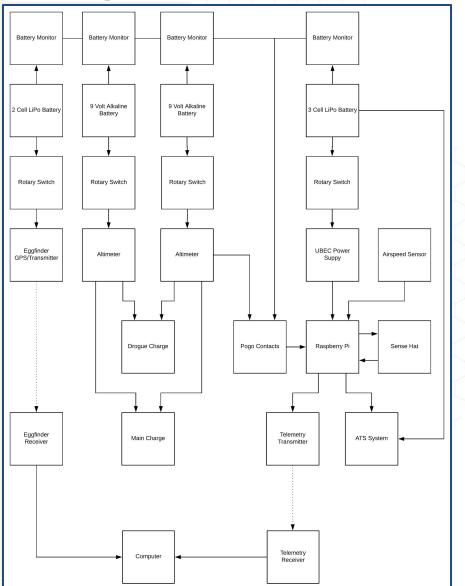
Rover FMEA

CREATING THE NEXT®36

Hazard	Causes	Impacts	Risk	Mitigation Strategy
Rover deployment actuates during flight	Signal interference			Rover deployment system does not actuate unless sensors indicate that the rocket has landed
	Coding error	Creates highly unstable		
	Improper wiring	flight leading to loss of vehicle, Challenge	1C	
	Component failure in a non safe mode	incomplete		
Rover deployment mechanism structural failure	Preexisting crack propagation	Slight imbalance affecting flight path, Premature rover deployment, Rover unable to deploy, Challenge incomplete		Deployment mechanism components will undergo structural testing to ensure they can withstand all loads with a factor of safety of 2
	Delamination of printed material		2D	
	Adhesive improperly mixed and set			
	Hard impact with ground			
	No signal reception	Solar panels unable to actuate, Rover drivetrain unable to move, Challenge incomplete		Ý
Rover deployment does	Depleted 9V battery			System will be tested in
not activate	Component structural failure		4C	advance, receiver will have a large antenna
	Coding error			

Remainder of Rover FMEA can be found in the CDR documentation

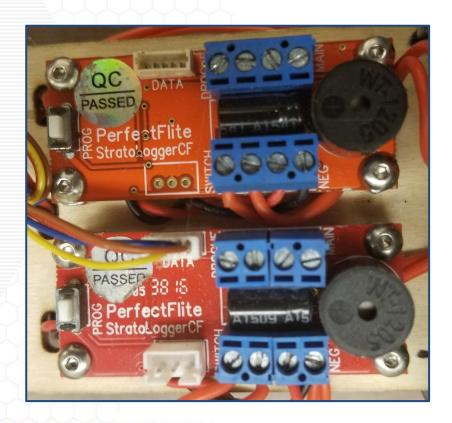
Flight Systems


Avionics Component Breakdown

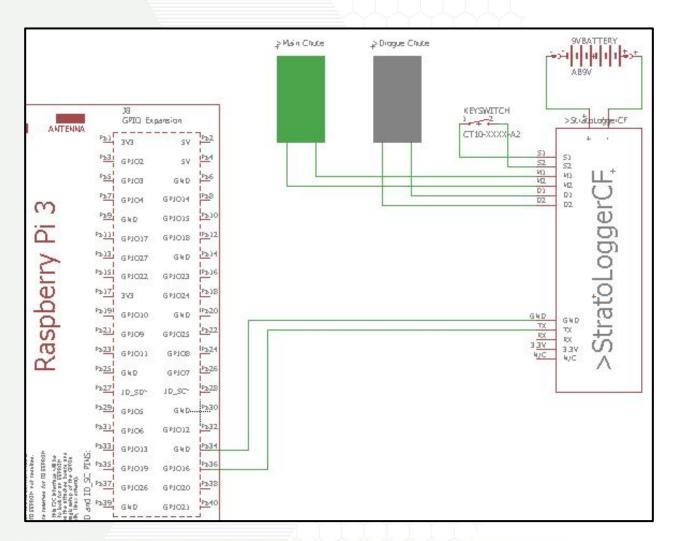
CREATING THE NEXT®38

Part	Function
Stratologger CF x2	Altimeter - ignite ejection charges, record max altitude, send real time altitude data to ATS
Eggfinder TX/RX Module	GPS module - used to track the rocket in real time
9V Alkaline Batteries	Provide power to the altimeters

Avionics System Block Diagram


Georgia Tech

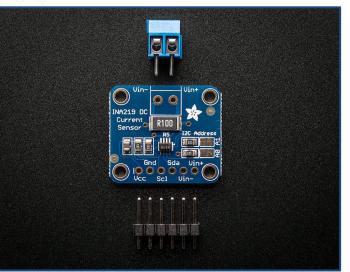
Altimeters


CREATING THE NEXT°40

- Two altimeters will be used for redundancy
- The four pyro outputs will be wired to two electric matches
- Max Altitude: 100,000 ft
- 20 samples per second
- one foot resolution < 38,000 ft
- Voltage in: 4-16 V
- Dimensions: 2.0"L x 0.84"W x 0.5"H
- Weight: 0.38 oz

Deployment Wiring Diagram

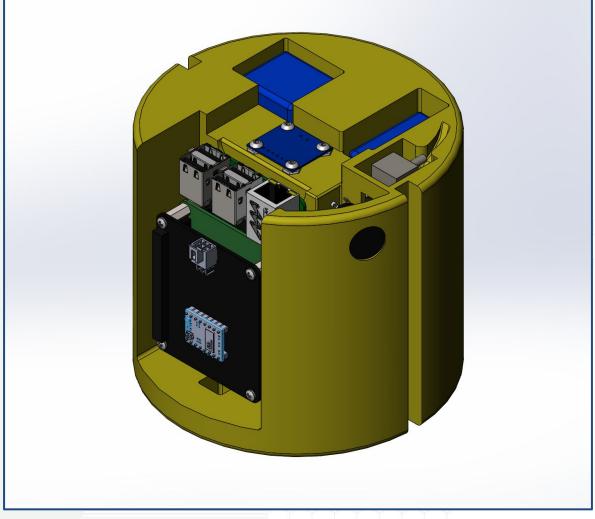
- Eggfinder Transmitter and Receiver Pair
- Laptop will be used to display and record data from receiver
- Transmits on 900 MHz band at 100mW
- Packets sent at 9600 baud, 8 bits, and no parity
- Tx Mass: 20 grams
- Power: 2 cell lipo
- Current Draw: 70-100 mA
- Dimensions: .9"W x 3"L x .4" H



CREATING THE NEXT®42

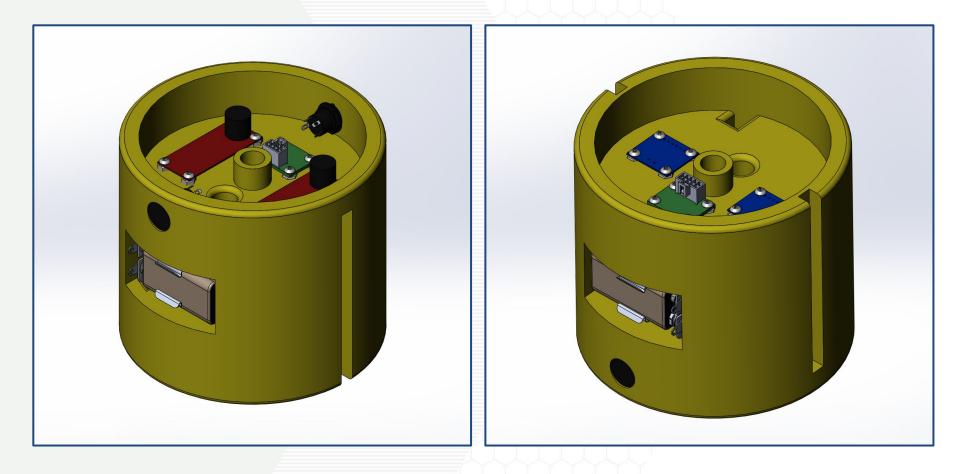
Telemetry

- Relays system information to the ground station
 - Battery voltages
 - Sensor data
 - ATS system events
- INA219 High Side DC Current Sensor
- Laptop will be used to display and record received data
- HKPilot Transceiver Telemetry Radio Set V2
- Transceiver transmits at 433mhz at 100mW



CREATING THE NEXT®13

ATS Section Housing



Avionics Section Housing

CREATING THE NEXT®45

Pogo Contact Assembly

CREATING THE NEXT°46

Test Plans and Procedures

////////CREATING THE NEXT°47

Test Plans and Procedures

By utilizing the requirements given by NASA the team was able to derive additional requirements and subsequent tests to verify each requirement.

Such tests are scheduled for the future and greater detail in the CDR document.

Requirement Tested	Test Description	Pass/Fail Criteria	Status		
Rover is not damaged by vibrations/landing	Rover will be enclosed in bay, and dropped from heights of 1 and 2 stories	Critical rover systems will remain intact after test	Incomplete		
The rover must deploy in the proper orientation	The deployment system will be triggered in several different orientations, three times each.	The rover will deploy in the proper orientation for all tests	Incomplete		
The rover can deploy regardless of rocket orientation	The rocket will be placed in several roll orientations. Each test will be conducted three times.	The rover will be successfully deployed at least 7/9 times, with no more than 1 unsuccessful deployment per orientation	Incomplete		
Requirement Tested	Test Description	Pass/Fail Criteria	Status		
Rover is not damaged by vibrations/landing	Rover will be enclosed in bay, and dropped from heights of 1 and 2 stories	Critical rover systems will remain intact after test	Incomplete		
The rover must deploy in the proper orientation	The deployment system will be triggered in several different orientations, three times each.	The rover will deploy in the proper orientation for all tests	Incomplete		

Requirements Verification

////////CREATING THE NEXT°49

Requirements Verification

Team has taken into account the NASA given requirements and derived several requirements in addition.

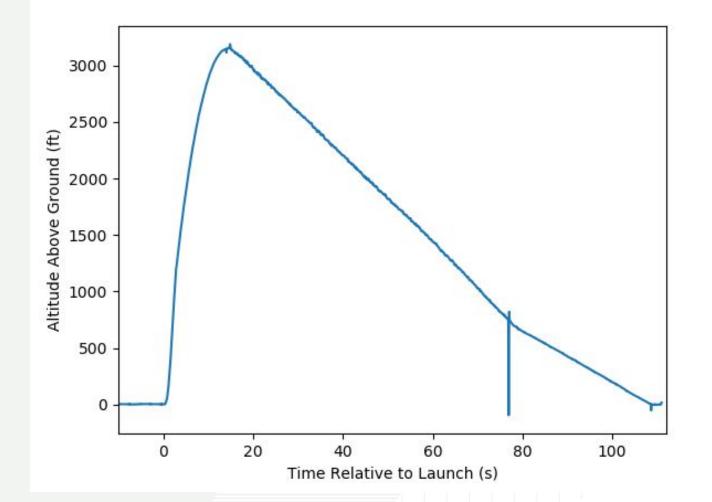
The requirements guided the implementation of the design features and creation of success criteria.

More detail is available in the CDR document.

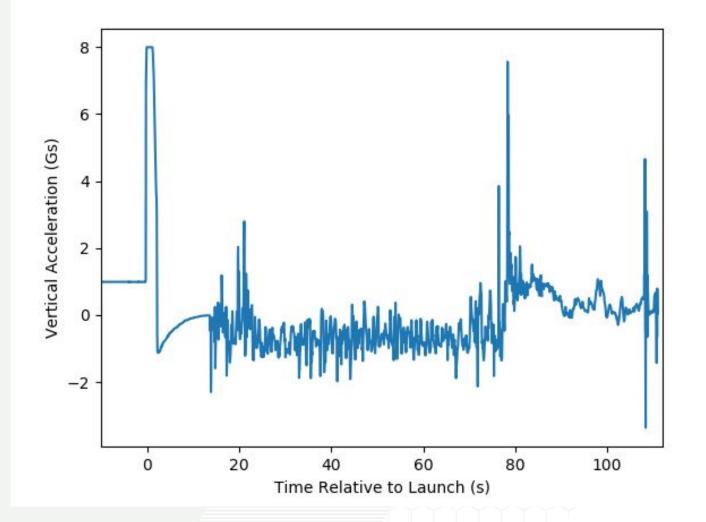
Requirement	Approach	Requirement Verification	Success Criteria		
The vehicle will safely deliver the payload (deployable rover) to an apogee altitude of 5,280 feet AGL and return to ground	The motor will overshoot the rocket beyond target apogee of 5,280 ft and the ATS system will retract in response to the altimeter reading to reduce the apogee	Gathering data from flight altimeter after test launch	The vehicle reaches the apogee within 2%		
The vehicle will carry altimeters to record data of the rockets ascent	The avionic bay will be housing two altimeters for recording the ascent	Inspection	Altimeter records data during flight		
Each altimeter will be armed by a dedicated switch accessible from the outside of the rocket	switch accessible from the exterior	Inspection	The altimeters are turned on by the key rotation		
Requirement	Approach	Requirement Verification	Success Criteria		
Each team will use a launch and safety checklist	be responsible to	The team will check that the safety officer has a safety checklist before launches			
Teams will abide by rules and guidance of the local rocketry club club's RSO		before launch to ensure	All rocketry club's rules are followed		
Teams will abide by FAA rules	The safety officer will ensure the team is abiding by all FAA rules	Inspection	All FAA rules are followed		

Subscale Flight

Subscale Flight Overview


- Launch conducted November 18th, 2917 in Talladega, AL
- Successful launch with proper testing of all essential rocket hardware, avionics, and recovery systems
- Rover deployment system ground testing conducted
- ATS did not deploy properly due to software error (hardware later tested on ground and confirmed fully operational)

Subscale Flight Data Analysis



///////////// CREATING THE NEXT°53

Subscale Flight Data Analysis (cont.)

QUESTIONS?

2017-2018 NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER 13TH, 2017

CREATING THE NEXT®

Appendix A - Launch Checklist

Prepare Rocket Payload

	Ensure all batteries are new/fully charged and connect to system electronic							
	Ensure vital electronics are all connected correctly to each other and running properly.							
	Ensure recovery system is wired redundantly and correctly. Ensure again.							
	Insert payload electronics into the avionics bay.							
	Connect all external switches and motor control outputs.							
	Arm altimeter and ensure that proper startup sequence follows.							
	Disarm Altimeter.							
	Arm apogee targeting system and verify that startup run as expected.							
rep	are Rover							
	No rover for the subscale launch							
lsse	mble Charges							
	Remove protective cover from e-match							
	Place tape adhesive side up in fishtail shape >							
	CAUTION: Black powder is highly flammable. Before measurement, make sure to keep away from all sources of flame and heat							
	Measure amount of black powder decided in ejection charge testing using tared massing scale							
	Place e-match on tape with adhesive side up at center of fishtail							
	Pour black powder over e-match							
	Seal tape in square pattern							
Cheo	ck Chute Connections							
	Ensure altimeters are disarmed							
	Connect charges to ejection wells							
	Turn on altimeters to verify continuity							
	Disarm altimeters							

CREATING THE NEXT°56

Pack	Parachutes
	Connect ends of drogue shock cord to Booster and Avionics sections
	Attach drogue parachute to drogue shock cord using quick-link carabiner or bowline knot
	Fold parachute over itself until appropriate thickness is achieved
	Fold cord between carabiner and parachute over folded parachute
	Roll parachute tightly sleeping-bag style
	Insert rolled parachute into compartment between booster section and avionics bay
	Fold excess shock cord so it does not tangle
	Attach Nomex cloth to shock cord so it will enclose and shield the parachute while exposin only the Kevlar shock cord to ejection charge
	Ensure that parachute + cloth moves easily in/out of tube. If there is any undue resistance, remove parachute and repack tighter
	Insert cellulose wadding into drogue parachute bay between ejection charges and parachute
	Insert Avionics bay into Booster section, and secure with 4 shear pins
	Attach main parachute shock cord to eye-bolt on upper end of Avionics bay and U-bolt on bottom end of nose-cone
	Attach main parachute to main parachute shock cord via quick-link carabiner or bowline knot
	Fold parachute over itself until appropriate thickness is achieved
	Fold cord between carabiner and parachute over folded parachute
	Roll parachute tightly sleeping-bag style

Appendix A - Launch Checklist

CREATING THE NEXT°57

	remove parachute and repack tighter
	Insert cellulose wadding into main parachute bay between ejection charges and parachute
	Insert main parachute and shock cord into main parachute bay between avionics bay and nosecone section
	Fold excess shock cord so it does not tangle
	Attach Nomex cloth to shock cord so it will enclose and shield the parachute while exposing only the Kevlar shock cord to ejection charge
	Insert cellulose wadding into upper payload parachute bay between ejection charges and parachute
	Secure avionics bay and upper tube with 4 shear pins
Assem	ble motor
	Note: Do not get grease on propellant grains or delay grain
	Note: Do not install igniter
	Follow manufacturer's instructions
	Note: ensure the motor remains vertically oriented until launch
	Unscrew motor retention cap and, while the rocket is in the upright position, slide in the assembled motor.
	Screw in motor retention cap to keep motor secure in rocket
	Check screws securing baseplate to the Booster tube to ensure they are not loose. If loose, apply a small amount of blue loctite and retighten

Lau	unch Vehicle Prep
	Inspect launch vehicle, check CG and make sure it is within specified range
	Bring launch vehicle to Range Safety Officer(RSO) for inspection
	CAUTION: Keep igniter clips away from all flammable materials, as sparking will occur. Cover eyes, and skin to prevent burns.
	Touch igniter clips together to make sure they will not fire the igniter when connected
	Connect igniter clips to motor igniter
Lau	inch
	Watch flight so launch vehicle sections do not get lost
Pos	t Launch Payload/Vehicle Recovery
	Use GPS (eggfinder tx) to locate launch vehicle
	Recover Payload Section and tethered Body/Booster Section
	Disarm Altimeters if there are unfired charges
P	Disassemble launch vehicle, clean motor case, other parts, and inspect for damage
	Record altimeter data

Title: Launch Motor Preparation

Procedure

Georgia Tech

- 1. Delay Grain Assembly
 - a. Without touching the ends of the delay grain, place the grey propellant cylinder into the delay insulator
 - b. Slide this assembly into the delay spacer
 - c. Grease the o-ring with synthetic teflon lube and place overexposed section of propellant grain
 - Be careful not to get any grease on the end of the propellant grain
- 2. Assembly of Delay Grain into FWD Closure
 - a. Grease the inside of the fwd closure, make sure to clean the small hole if it become filled with grease in this step
 - b. Place neoprene washer at the bottom on the well
 - c. Press the delay grain assembly into the well, o-ring-side entering first
 - d. Grease the main fwd o-ring, and place over the end of the fwd closure
- 3. Liner Insertion into Main Casing
 - a. Slide liner into casing, check to ensure that it slides smoothly
 - If not, maybe have to sand down liner
 - b. After ensuring fit, pull out liner, thoroughly grease the outsides, and push back in, wiping grease as it builds up around the edge. Leave .5" exposed
 - Do not grease if liner is black phenolic
 - c. Place an insulator disk on top of the exposed liner, and push in until internal threads are exposed
 - d. Screw on FWD closure assembly so that o-ring presses against the insulator disk
- 4. Grain Assembly into Casing
 - a. Stand motor on FWD closure
 - b. Pull liner out .5"
 - c. Without touching the ends of the grain, drop the two propellant tubes into the liner
 - d. Press insulator disk on top, and push down until liner stops moving
- 5. Aft Closure Assembly
 - a. Place the nozzle into the hole
 - b. Place a greased o-ring into casing, over the nozzle, so it sits on top of the insulator disk
 - c. Screw the aft closure over the nozzle/o-ring
- 6. Final Steps
 - a. Place the plastic nozzles over the aft and fwd closures

Min Personnel Requirements: 2 people Materials (ref 3.6. Material Handling)

- Aluminum particles
- Ammonium perchlorate

CREATING THE NEXT°58

- Iron oxide
- Safety Equipment Required
 - Safety glasses
 - Latex/Nitrile gloves

Safety Officer Signature:

Title: Folding and Packing Parachutes

Procedure

- 1. Folding Parachute
 - a. "Fluff", or lay out, chute on a flat surface
 - b. Straighten the lines so they come to a point away from the chute
 - i. Untangle lines if tangled
 - c. Grab all shroud lines and organize the panels of the chute
 - d. Fold on the panel lines toward the center
 - e. Continue folding until width is approx 2X length you desire it occupy in the rocket
 - f. Bring shroud line bundle up through center, then fold over and pull back down so a small length lies outside the parachute
 - g. Fold one more time, over the shroud lines
 - h. Wrap up the chute from the tip, tightly packing as you go
- 2. Attaching to Shock Cord
 - a. Tie a knot in the shock cord line, about 1/3 the length from the connection point to the above section
 - b. Use a quicklink to connect the knotted loop to the end of the shroud lines sticking out of the packed parachute
- 3. Assembling into Tube
 - a. Thread a kevlar parachute protector sheet over the shock cord until it reach the parachute (in its packed form still)
 - b. Have another person bundle up the shock cord to one side of the parachute in a figure 8 pattern
 - c. Push the bundled shock cord and packed parachute (now partially covered by the kevlar sheet) into the tube and push until it hits the bulkhead on the other end
 - d. Bundle the shock cord on the other end of the parachute in a similar way and shove into tube
 - e. Connect the two sections of the rocket to encapsulate the parachute+shock cord assembly in between the two sections of the rocket

Safety Officer Signature:

Min Personnel Requirements: 2 people Materials (ref 3.6. Material Handling)

CREATING THE NEXT°59

- Nylon parachute
- Kevlar sheet
- Nylon shock cord

Safety Equipment Required

• N/A

Title: Shear Pin / Rivet Installation

Procedure

CREATING THE NEXT°60

- 1. Shear Pin Installation
 - a. Assemble rocket
 - b. Using permanent marker, create two "witness marks" across the separation line between two sections of the rocket (for consistent future orientation)
 - c. Drill X number of 1/16" dia holes, equally spaced, around the perimeter of the tube
 - i. Ensure that sections do not "wiggle" while drilling holes as may cause misaligned of previously drilled holes
 - ii. Ensure that rocket tube is empty before drilling, as there is a high risk of drilling into parachute or shock cord and causing damage
 - d. If tube is paper: place drop of glue inside to stiffen the walls of the hole
 - e. If tube is hard (fiberglass, carbon fiber): tap the hole to create threads for the plastic screw, aka "shear pin"
 - f. Thread or push shear pins into holes after aligning with the "witness marks"
- 2. Shear Pin Removal
 - a. unscrew /pry out head of shear pin
 - b. Use small drill bit to push in the other section of the pin lodged in the hole of the inner tube
- 3. Rivet Installation
 - a. Repeat steps a & b from "Shear Pin Installation", above
 - b. Drill X number of 11/64" holes, equally spaced, around perimeter of tube
 - i. Ensure that sections do not "wiggle" while drilling holes as may cause misaligned of previously drilled holes
 - ii. Ensure that rocket tube is empty before drilling, as there is a high risk of drilling into parachute or shock cord and causing damage
 - c. Assemble rocket sections
 - d. Push shear pins into each of the holes
 - e. Push heads of pins into the hole on top of each pin until it stops
- 4. Rivet Removal
 - a. Pull head out of rivet
 - i. May require flathead screwdriver to pry out
 - b. Pry out rivet body

Safety Officer Signature: _

Min Personnel Requirements: 1 person Materials (ref 3.6. Material Handling)

- Fiberglass (depending on tube material) Safety Equipment Required
 - Safety glasses
 - >P90 Respirator (if fiberglass tubing used)
 - Safety gloves (if fiberglass tubing used)

Title: Ejection Charge Assembly and Testing

Assembling Charges

- 1. Sizing Charges
 - a. Using body tube diameter, and length of parachute sections, utilize online ejection charge calculator to estimate the amount of black powder needed
 - i. Note: 4-shear pin design requires approx 40lb shear force to break
 - ii. Using P = F / A, calculate the pressure needed to cause an appropriate shear force
 - iii. Use F = P * A to calculate the force on the bulkheads during ejection events
- 2. Bagging and Storage
 - a. Black powder is plastic-safe, but easily corrodes metals, so be sure to store in a plastic container
 - b. Black powder must be stored in a dry environment so ensure water-seal
- 3. Placing in Vehicle
 - a. With the ejection wells oriented upward, carefully pour the black powder into each well
 - b. With the leads twisted together, place an e-match in each well so that the igniter lies inside the black powder
 - c. Pack fiberglass insulation into the well and place a strip of tape over the top to keep the assembly packed inside the well
 - d. Untwist the leads on the e-matches, and place them into the correct holes in the terminal block on the bulkhead
 - e. Screw down the wires to secure them into the terminal block

Min Personnel Requirements: 2 people Materials (ref 3.6. Material Handling)

- FFFF Black Powder
- Fiberglass insulation
- 9V Battery
- Safety Equipment Required
 - Safety glasses
 - Latex/Nitrile gloves
 - P95 Respirator Mask

Georgia Tech

CREATING THE NEXT®67

Testing Charges

- 1. Lead Extension
 - a. Measure out two strips of at least 5 ft long 22 AWG wire, preferably of different colors
 - b. Strip end of wire
 - c. Route ends of wire into respective holes in terminal block to connect to one of the e-matches connected to the other end of the terminal block
- 2. Vehicle Assembly
 - a. Route the extension wires out of an access hole
 - b. Close sections of rocket, with parachutes packed inside and protected with kevlar sheets
 - c. Insert shear pins
- 3. Vehicle Positioning
 - a. Position vehicle so it lies on its side
 - b. Ensure the bottom is placed against a wall, or other solid surface
 - c. Ensure the trajectory is clear of obstacles
 - d. Angle rocket slightly so nose does not aim toward the ground
 - e. Preferably tested outside on grass to prevent damage to tubes during impact
- 4. Personnel Hazard Mitigation
 - a. Test outside, in an open space (>50 ft radius without other people or obstacles around)
 - b. Stand at least 5 ft away from the vehicle, to its side, when shorting the leads to create the ejection event
 - c. Make sure there are no loose object in the compartments that are undergoing ejection charge testing to minimize risk of ejecting solid objects at high velocities away from the rocket
 - d. Have a fire extinguisher nearby in the case that a fire results from the ejection event
- 5. Test
 - a. Standing >5 ft to the side of the vehicle, short the leads of the extension wire across a 9V battery
 - b. Watch for flames
 - c. Wait approximately 30s before touching components of rocket, as they may be hot

Safety Officer Signature:

Appendix C: Fabrication Task Breakdown

		DONE	Material	Fabrication			
#	Task Description	?	Handled	Techniques	Est. Time	Fabrication Locations	Safety Precautions
1	3D Print Servo Brackets	NO	PLA/ABS	3D Printer	< 1hr	Inv Studio / AE MakerSpace	N/A
2	Cut Motor Tube to Length	NO	Cardboard	Chop Saw	< 1hr	Inv Studio / SCC	N/A
3	Cut Tubing to Length	NO	Fiberglass	Chop Saw	< 1hr	Inv Studio	2 ppl, shop vac, N95/P95 mask
4	Drill Shear Pin Holes (8)	NO	Fiberglass	Drill	< 1hr	RR room / Inv Studio	2 ppl, shop vac
5	Drill Rivet Holes (4)	NO	Fiberglass	Drill	< 1hr	RR room / Inv Studio	2 ppl, shop vac
6	Drill wire routing holes into bulkheads/centering rings	NO	Fiberglass	Drill	< 1hr	RR room / Inv Studio	2 ppl, shop vac
7	Drill Holes for Bottom Plate	NO	6061 Aluminum	Drill	< 1hr	RR room / Inv Studio	
8	Slots into Body Tubing	NO	Fiberglass	Jigsaw/Bands aw/Chop Saw	2 hrs	Inv Studio / SCC	2 ppl, shop vac, N95/P95 mask
9	Cut out Thrust Plate	NO	Plywood	Laser Cutter	< 1hr	Inv Studio / AE MakerSpace	N/A
10	Fin Features for Brackets	NO	Fiberglass	Mill	1-2 hrs	BME Shop	2 ppl, shop vac, N95/P95 mask
11	Features for Brackets	NO	Fiberglass	Mill	1-2 hrs	BME Shop	2 ppl, shop vac, N95/P95 mask
12	Flats into Shafts	NO	1024 Steel	Mill/Grinder	1-2 hrs	Montgomery MM	N/A
13	Fin Brackets	NO	6013 Aluminum	Waterjet	1-2 hrs	Inv Studio / SCC	N/A
14	Avionics Bay Tray Brackets	NO	6013 Aluminum	Waterjet	1-2 hrs	Inv Studio / SCC	N/A
15	Fins Cut Out	NO	Fiberglass	Waterjet	2 hrs	Inv Studio	N/A
16	Avionics Bay bulkheads (2 coupler, 2 body)	NO	Fiberglass	Waterjet	1-2 hrs	Inv Studio	N/A
17	Cut Out Bottom Plate	NO	6061 Aluminum	Waterjet	1-2 hrs	Inv Studio / SCC	N/A
18	Cut Out Bevel Ring Gear	NO	6061 Aluminum	Waterjet	1-2 hrs	Inv Studio	N/A

Appendix C: Fabrication Tasks Breakdown

19	Cut Out Flaps	NO	6061 Aluminum	Waterjet	1-2 hrs	Inv Studio	N/A
20	Set Screws for gears / servo hub attachments	NO	Brass / Aluminum	Drill, Saws, etc	2 hrs	Anywhere you can	N/A
21	Cut servo hub to length	NO	Aluminum		<1hr	Inv Studio	N/A
22	Drill gears bore diameter	NO	Brass	Drill	<1hr	Inv Studio	N/A
		NO			II.		
21	Epoxy Fins + Centering rings to Motor Tube	NO		Booster			
22	Epoxy Thrust Plate Inside Body Tube	NO		Fins			
23	Assemble Avionics Bay (Tray, brackets, threaded rods, nuts)	NO		Avionics Bay			
24	Nose Cone Weight	NO		Recovery			
25	GPS Bay Epoxy	NO		Fin-Roll Mechanism			
26	Bottom Plate Brackets Installed	NO					
28	Motor Measured Out + Dimensional Sketch of Booster ASSY	NO			IIII		
29	GPS Bat ASSY (PVC fitting + Ubolt)	NO			LL.		
30	GPS Bay Epoxied	NO	1		LL.		
31	Fins Epoxied to Tubing (Nice, LARGE Fillets)	NO	人				
32	Shock Cord Cut to Length	NO			4		
33	Parachute Attached to Shock Cord & Quick Links	NO			4		
34	Ejection Charges Created	NO			2		
35	ATS System ASSY	NO					
36	Ground Ejection Test (main)	NO					
37	Ground Ejection Test (drogue)						