Milestone Review Flysheet 2017-2018

Institution

Georgia Institute of Technology

Vehicle Properties			
Total Length (in)	108		
Diameter (in)	5.562		
Gross Lift Off Weigh (lb.)	39.734		
Airframe Material(s)	G12 Fiberglass		
Fin Material and Thickness (in)	G10 Fiberglass (0.25")		
Coupler Length/Shoulder Length(s) (in)	12"		

Stability Analysis			
Center of Pressure (in from nose)	83.764 in		
Center of Gravity (in from nose)	71.817 in		
Static Stability Margin (on pad)	2.13		
Static Stability Margin (at rail exit)	2.15		
Thrust-to-Weight Ratio	7.78 : 1		
Rail Size/Type and Length (in)	1515 / 12 ft		
Rail Exit Velocity (ft/s)	73.8		

Recovery System Properties				
	Drogue Parachute			
Mai	nufacturer/Mo	odel	Apogee 29095	
Size,	/Diameter (in o	or ft)	36 in	
Altitude at Deployment (ft)		At Apogee		
Velocity at Deployment (ft/s)		17.3	375	
Terminal Velocity (ft/s)		76		
Recovery Harness Material		Tubular Nylon		
Recovery Harness Size/Thickness (in)		9/16in dia		
Recovery Harness Length (ft)		2	24	
Harness/Airframe Interfaces		Qu	Quicklink to Eyebolt	
Kinetic Energy of	Section 1	Section 2	Section 3	Section 4
Each Section (Ft-	817.97	401.09	1650.38	

Recovery Electronics		
Altimeter(s)/Timer(s)	PerflectFlight Stratologger	
(Make/Model)	CF Altimeters	
Redundancy Plan and	Two, independently	
Backup Deployment	powered altimeters will be	
Settings	used	
Pad Stay Time (Launch Configuration)	2 hours minimum	

Milestone

FRR

Motor Properties		
Motor Brand/Designation	Aerotech L1390G	
Max/Average Thrust (lb.)	370.89 / 305.63	
Total Impulse (lbf-s)	887	
Mass Before/After Burn (lb.)	8.54 / 4.2	
Liftoff Thrust (lb.)	300	
Motor Retention Method	Threaded Retainer	

Ascent Analysis		
Maximum Velocity (ft/s)	628	
Maximum Mach Number	0.564	
Maximum Acceleration (ft/s^2)	275	
Predicted Apogee (From Sim.) (ft)	5081	

Recovery System Properties				
	Main Parachute			
Mai	nufacturer/Mo	odel	Fruity Chutes/IFC-96	
Size/	'Diameter (in d	or ft)	96 in	
Altitude at Deployment (ft)		500		
Velocity at Deployment (ft/s)		nt (ft/s)	75.5	
Terminal Velocity (ft/s)		ft/s)	15.4	
Recovery Harness Material		aterial	Tubular Nylon	
Recovery Harness Size/Thickness (in)		ickness (in)	9/16in dia	
Recovery Harness Leng		igth (ft)	30	
Harness/Airframe Interfaces		Qu	icklink to Eyeb	olt
Kinetic Energy of	Section 1	Section 2	Section 3	Section 4
Each Section (Ft-	36.3	17.8	73.25	

Recovery Electronics		
Rocket Locators (Make/Model)	Eggfi	nder TX and RX
Transmitting Frequencies (all - vehicle and payload)	900 MHz, 433 MHz	
ection System Energetics (ex	. Black Powde	FFFF BlackPowder
Energetics Mass - Drogue	Primary	1.5
Chute (grams)	Backup	1.5
Energetics Mass - Main	Primary	2.5
Chute (grams)	Backup	2.5
Energetics Masses - Other	Primary	N/A
(grams) - If Applicable	Backup	N/A

Milestone Review Flysheet 2017-2018

Institution	Georgia Institute of Technology Milestone FRR		
	Payload		
	Overview		
Payload 1 (official payload)	The Rover Payload comprises of a Rover vehicle that is capable of autonomous movement and unfolding solar panels, as well as a deployment mechanism to remove the vehicle from the rocket body. During flight, the rover is housed within the body of the rocket. After landing, it is the function of the deployment system to get the rover out of the rocket and onto the ground so it can complete its mission.		
	Overview		
Payload 2 (non-scored payload)	The purpose of the Apogee Target System (ATS) is to adjust the apogee of a rocket by providing additional drag force after the burnout. Considering the unpredictability of external factors such as wind gust that cannot be simulated, it is crucial to a system that can adjust any deviation from ideal flight. Variable drag force is provided by adjusting surface areas by actuating flaps, which are controlled by motors and integrated board.		

	Test Plans, Status, and Results			
Ejection Charge Tests Tests Tests Tests Tests Tests Tests Tests Tests Tests Tests Tests Tests Tests		The ejection system of the rocket is controlled by the StratologgerCF altimeters that output a high current to an electric match. A black powder charge that blows out the chutes is ignited by this process. The altimeters will be tested through a barometric pressure chamber equppied with LED mock charges. The black powder ested and recorded at the subscale launch, which was on Saturday November 18th.		
	Sub-scale Test Flights	A subscale rocket was launched November 18th with fully functioning sensors and recovery system, and a prototype design of our Apogee Targeting System. The launch was conducted in an approved event and area in Taledega, Alabama. Our mentor with level 2 cerficiation and our safety officer were both present. The launch was successful, but the Apogee Targeting System did not deploy properly, due to an error in the n addition, ground testing of the Rover Deployment System was successfully completed.		
	Full-scale Test Flights	The full scale rocket was launched on February 24, 2018. The launch was conducted in an approved event and area in Samson, Alabama. Our mentor with level 2 cerficiation and our safety officer were both present. The launch and recovery were successful, but the Apogee Targeting System and Rover Deployment system were not active. Therefore, these systems will not be active for the competition flight.		

			• •	
Milestone Review Flysheet 2017-2018				
Institution	Georgia Institute of Technology	Milestone	FRR	
	Additional Comme	nts		

.