Milestone Review Flysheet 2017-2018

Institution

Georgia Institute of Technology

Vehicle Proper	ties
Total Length (in)	102
Diameter (in)	5.562
Gross Lift Off Weigh (lb.)	36.875
Airframe Material(s)	G12 Fiberglass
Fin Material and Thickness (in)	G10 Fiberglass (0.25")
Coupler Length/Shoulder Length(s) (in)	12/6

Stability Analy	/sis
Center of Pressure (in from nose)	78 (at rail exit)
Center of Gravity (in from nose)	65.7 (at launch)
Static Stability Margin (on pad)	2.2
Static Stability Margin (at rail exit)	2.25
Thrust-to-Weight Ratio	8.136 (at launch)
Rail Size/Type and Length (in)	1010 / 96in
Rail Exit Velocity (ft/s)	70.3

	Recover	y System Pr	operties	
	Dro	ogue Parach	ute	
Ma	nufacturer/Mc	odel	PAR-4	15 TFR
Size	/Diameter (in c	or ft)	45	Sin
Altitud	de at Deployme	ent (ft)	At Ap	oogee
Velocit	y at Deployme	nt (ft/s)	19	9.7
Terr	minal Velocity (ft/s)	5	7
Recov	ery Harness M	aterial	Tubula	r Nylon
Recovery H	larness Size/Th	ickness (in)	9/16	in dia
Recove	ery Harness Len	gth (ft)	2	.0
Harness/Airfra	ame Interfaces	Qı	iicklink to Eyeb	olt
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-lbs)	237.5	127.78	280.89	/

Reco	overy Electronics
Altimeter(s)/Timer(s)	PerflectFlight Stratologger CF
(Make/Model)	Altimeters
Redundancy Plan and Backup Deployment Settings	Two altimeters will be used
Pad Stay Time (Launch Configuration)	2 hours minimum

Milestone

PDR

Мс	otor Properties
Motor Brand/Designation	Aerotech L1390G
Max/Average Thrust (lb.)	370.89 / 305.63
Total Impulse (lbf-s)	887
Mass Before/After Burn (lb.)	8.54 / 4.2
Liftoff Thrust (lb.)	300
Motor Retention Method	Threaded Retainer

Ascent Analy	sis
Maximum Velocity (ft/s)	678
Maximum Mach Number	0.61
Maximum Acceleration (ft/s^2)	298
Predicted Apogee (From Sim.) (ft)	5533

	Recover	y System Pr	operties	
	М	ain Parachu	ite	
Ma	nufacturer/Mo	odel	Rocketma	an Stf 16ft
Size	/Diameter (in d	or ft)	16	öft
Altitud	de at Deployme	ent (ft)	80	00
Velocit	y at Deployme	nt (ft/s)	44	1.7
Terr	ninal Velocity (ft/s)	1	2
Recov	ery Harness M	aterial	Tubula	r Nylon
Recovery H	arness Size/Th	ickness (in)	9/16	in dia
Recove	ry Harness Ler	igth (ft)	2	0
Harness/Airfra	ame Interfaces	Qu	iicklink to Eyeb	olt
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-lbs)	59.75	32.145	70.665	/

Reco	overy Electro	onics
Rocket Locators (Make/Model)	Eggfi	inder TX and RX
Transmitting Frequencies (all - vehicle and payload)	***F	Required by CDR***
jection System Energetics (ex	k. Black Powder	FFFF BlackPowder
Energetics Mass - Drogue	Primary	1.5
Chute (grams)	Backup	1.5
Energetics Mass - Main	Primary	2.25
Chute (grams)	Backup	2.25
Energetics Masses - Other	Primary	N/A
(grams) - If Applicable	Backup	N/A

Milestone Review Flysheet 2017-2018

Institution	Georgia Institute of Technology Milestone PDR
	Payload
	Overview
Payload 1 (official payload)	The Rover Payload comprises of a Rover vehicle that is capable of autonomous movement and unfolding solar panels, as well as a deployment mechanism to remove the vehicle from the rocket body. During flight, the rover is housed within the body of the rocket. After landing, it is the function of the deployment system to get the rover out of the rocket and onto the ground so it can complete its mission.
	Overview
Payload 2 (non-scored payload)	The purpose of the Apogee Target System (ATS) is to adjust the apogee of a rocket by providing additional drag force after the burnout. Considering the unpredictability of external factors such as wind gust that cannot be simulated, it is crucial to a system that can adjust any deviation from ideal flight. Variable drag force is provided by adjusting surface areas by actuating flaps, which are controlled by motors and integrated board.
	Test Plans, Status, and Results
Ejection Charge Tests	The ejection system of the rocket is controlled by the StratologgerCF altimeters that output a high current to an electric match. A black powder charge that blows out the chutes is ignited by this process. The altimeters will be tested through a barometric pressure chamber equppied with LED mock charges. The black powder charges will tested and recorded at the subscale launch, scheduled for Saturday November 18th.
Sub-scale Test Flights	Subscale will be launched November 18th with fully functioning sensors and recovery system, and prototype designs of our Apogee Targeting System and Rover Deployment System. Construction of the subscale rocket has been completed. The launch will be conducted in an approved event and area in Taledega, Alabama. Our mentor with level 2 cerficiation and our safety officer will both be present.
Full-scale Test Flights	The full scale rocket will be launched tentatively in late January. It will be conducted at an approved event and area in most likely Alabama, with our mentor with level 2 NRA certification and our safety officer both present. Full functionality will be present on all systems, and a thoroughly tested recovery system with dual redundancy will be employed.

Institution Georgia Institute of Technology Milestone PDR
Additional Comments